Boundary-value problem for the Korteweg-de Vries-Burgers type equation

被引:0
|
作者
Nakao Hayashi
Elena I. Kaikina
H. Francisco Ruiz Paredes
机构
[1] Department of Mathematics,
[2] Graduate School of Science,undefined
[3] Osaka University,undefined
[4] Toyonaka 560-0043,undefined
[5] Osaka,undefined
[6] Japan,undefined
[7] e-mail: nhayashi@math.wani.osaka-u.ac.jp,undefined
[8] Departamento de Ciencias Básicas,undefined
[9] Instituto Tecnológico de Morelia,undefined
[10] CP 58120,undefined
[11] Morelia,undefined
[12] Michoacán,undefined
[13] México,undefined
[14] Programa de Graduados de Eléctrica,undefined
[15] Instituto Tecnológico de Morelia,undefined
[16] CP 58120,undefined
[17] Morelia,undefined
[18] Michoacán,undefined
[19] México,undefined
来源
Nonlinear Differential Equations and Applications NoDEA | 2001年 / 8卷
关键词
Key words: Boundary value problems, Korteweg-de Vries-Burgers equation.;
D O I
暂无
中图分类号
学科分类号
摘要
We study the following initial-boundary value problem for the Korteweg-de Vries-Burgers equation on half-line¶¶\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} \cases{ u_{t}+u_{x}^{2}-u_{xx}+u_{xxx}=0, $(x,t)\in {{\bf R}^{+}}\times {{\bf R} ^{+}}$,\cr u(x,0)=u_{0}(x),$ x\in {{\bf R}^{+}}$,\hspace*{8pc}(1)\cr u(0,t)=0,$ t\in {{\bf R}^{+}}$.} \end{document}¶¶We prove that if the initial data \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $ u_{0}\in {\bf X} $\end{document}, and the norm \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $ \Vert u_{0}\Vert _{{\bf X}} $\end{document} is sufficiently small, where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $ {\bf X}=\{\varphi \in {\bf L}^{1}\cap {\bf H}^{1};\Vert \varphi \Vert _{{\bf X}}=\Vert \varphi \Vert _{{\bf L}^{1}}+\Vert \varphi \Vert _{{\bf H}^{1}}$\end{document}<\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $ \infty \} $\end{document}, then there exists a unique solution \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $ u\in {\bf C}([0,\infty );{\bf H}^{1}) $\end{document} of the initial-boundary value problem (1), where Hk is the Sobolev space with norm \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $ \Vert \phi \Vert _{{\bf H}^{k}}=\Vert (1-\partial _{x}^{2})^{\frac{k}{2}}\phi \Vert _{{\bf L}^{2}}. $\end{document} We also find the large time asymptotics of the solutions under the condition \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $ x^{1+\delta }u\in {\bf L}^{1}\cap {\bf L}^{2} $\end{document} with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $ \delta \in (0,1). $\end{document} More pricesely, we prove¶¶\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $ u(x,t)=\frac{A}{t}e^{-\frac{x^{2}}{4t}}\frac{x}{2\sqrt{t}}+O\Bigg(\min \left( 1,\frac{x}{2\sqrt{t}}\right) t^{-1-\frac{\delta}{2}}\Bigg), $\end{document}¶¶where A will be defined below in Theorem 2.
引用
收藏
页码:439 / 463
页数:24
相关论文
共 50 条
  • [1] Boundary-value problem for the Korteweg-de Vries-Burgers type equation
    Hayashi, N
    Kaikina, EI
    Paredes, HFR
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2001, 8 (04): : 439 - 463
  • [2] Boundary Stabilization of the Korteweg-de Vries Equation and the Korteweg-de Vries-Burgers Equation
    Chaohua Jia
    Bing-Yu Zhang
    Acta Applicandae Mathematicae, 2012, 118 : 25 - 47
  • [3] Boundary Stabilization of the Korteweg-de Vries Equation and the Korteweg-de Vries-Burgers Equation
    Jia, Chaohua
    Zhang, Bing-Yu
    ACTA APPLICANDAE MATHEMATICAE, 2012, 118 (01) : 25 - 47
  • [4] KORTEWEG-DE VRIES-BURGERS EQUATION
    CANOSA, J
    GAZDAG, J
    JOURNAL OF COMPUTATIONAL PHYSICS, 1977, 23 (04) : 393 - 403
  • [5] On the boundary-value problem for the Korteweg-de Vries equation
    Hayashi, N
    Kaikina, EI
    Guardado, JL
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2003, 459 (2039): : 2861 - 2884
  • [6] Boundary stabilization of the Generalized Korteweg-de Vries-Burgers equation
    Smaoui, Nejib
    PROCEEDINGS OF THE WSEAS INTERNATIONAL CONFERENCE ON CIRCUITS, SYSTEMS, ELECTRONICS, CONTROL & SIGNAL PROCESSING: SELECTED TOPICS ON CIRCUITS, SYSTEMS, ELECTRONICS, CONTROL & SIGNAL PROCESSING, 2007, : 177 - 180
  • [7] Boundary control of the generalized Korteweg-de Vries-Burgers equation
    Smaoui, Nejib
    Al-Jamal, Rasha H.
    NONLINEAR DYNAMICS, 2008, 51 (03) : 439 - 446
  • [8] Global boundary stabilization of the Korteweg-de Vries-Burgers equation
    Liu, Wei-Jiu
    Krstic, Miroslav
    COMPUTATIONAL & APPLIED MATHEMATICS, 2002, 21 (01): : 315 - 354
  • [9] Asymptotics for the Korteweg-de Vries-Burgers Equation
    Nakao HAYASHI
    Pavel I.NAUMKIN
    Acta Mathematica Sinica(English Series), 2006, 22 (05) : 1441 - 1456
  • [10] Asymptotics for the Korteweg-de Vries-Burgers equation
    Hayashi, Nakao
    Naumkin, Pavel I.
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2006, 22 (05) : 1441 - 1456