Smoothness of Stationary Subdivision on Irregular Meshes

被引:1
|
作者
D. Zorin
机构
[1] Courant Institute of Mathematical Sciences New York University,Department of Computer Science
来源
关键词
Key words. Stationary subdivision, Subdivision surfaces, Arbitrary meshes. AMS Classification. 65D10, 65D17, 68U05.;
D O I
暂无
中图分类号
学科分类号
摘要
We derive necessary and sufficient conditions for tangent plane and Ck -continuity of stationary subdivision schemes near extraordinary vertices. Our criteria generalize most previously known conditions. We introduce a new approach to analysis of subdivision surfaces based on the idea of the universal surface . Any subdivision surface can be locally represented as a projection of the universal surface, which is uniquely defined by the subdivision scheme. This approach provides us with a more intuitive geometric understanding of subdivision near extraordinary vertices.
引用
收藏
页码:359 / 397
页数:38
相关论文
共 50 条
  • [1] Smoothness of stationary subdivision on irregular meshes
    Zorin, D
    CONSTRUCTIVE APPROXIMATION, 2000, 16 (03) : 359 - 397
  • [2] Nonlinear Subdivision Schemes on Irregular Meshes
    Weinmann, Andreas
    CONSTRUCTIVE APPROXIMATION, 2010, 31 (03) : 395 - 415
  • [3] Nonlinear Subdivision Schemes on Irregular Meshes
    Andreas Weinmann
    Constructive Approximation, 2010, 31 : 395 - 415
  • [4] Displaced subdivision meshes
    Hussain, M
    Okada, Y
    Niijima, K
    PROCEEDINGS OF THE FIFTEENTH IASTED INTERNATIONAL CONFERENCE ON MODELLING AND SIMULATION, 2004, : 497 - 502
  • [5] Smoothness of Subdivision Surfaces with Boundary
    Henning Biermann
    Sara Grundel
    Denis Zorin
    Constructive Approximation, 2015, 42 : 1 - 29
  • [6] Smoothness of Subdivision Surfaces with Boundary
    Biermann, Henning
    Grundel, Sara
    Zorin, Denis
    CONSTRUCTIVE APPROXIMATION, 2015, 42 (01) : 1 - 29
  • [7] A mixed hyperbolic/trigonometric non-stationary subdivision scheme for arbitrary topology meshes
    Barrera, Domingo
    Lamnii, Abdellah
    Nour, Mohamed-Yassir
    Zidna, Ahmed
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2022,
  • [8] A non-stationary subdivision scheme for generalizing trigonometric spline surfaces to arbitrary meshes
    Jena, MK
    Shunmugaraj, P
    Das, PC
    COMPUTER AIDED GEOMETRIC DESIGN, 2003, 20 (02) : 61 - 77
  • [9] STATIONARY SUBDIVISION
    CAVARETTA, AS
    DAHMEN, W
    MICCHELLI, CA
    MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 1991, 93 (453) : 1 - 186
  • [10] Commutation for irregular subdivision
    Daubechies, I
    Guskov, I
    Sweldens, W
    CONSTRUCTIVE APPROXIMATION, 2001, 17 (04) : 479 - 514