A mixed hyperbolic/trigonometric non-stationary subdivision scheme for arbitrary topology meshes

被引:3
|
作者
Barrera, Domingo [1 ]
Lamnii, Abdellah [2 ]
Nour, Mohamed-Yassir [3 ,4 ]
Zidna, Ahmed [4 ]
机构
[1] Univ Granada, Dept Appl Math, Granada, Spain
[2] Abdelmalek Essaadi Univ LaSAD, ENS, Tetouan 93030, Morocco
[3] Univ Hassan First, MISI Lab, FSTS, Settat, Morocco
[4] Univ Lorraine, LGIPM, Metz, France
关键词
arbitrary topology; non-stationary subdivision; medical image; mixed hyperbolic; trigonometric subdivision; shape parameter; SPLINE SURFACES;
D O I
10.1002/mma.8350
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, a new non-stationary mixed scheme constructed from hyperbolic and trigonometric schemes is presented. It is characterized by a shape parameter that allows the user to modify the shape of the surface obtained from a given initial mesh. Such a non-stationary subdivision scheme is constructed by taking the tensor product of the univariate mixed hyperbolic/trigonometric schemes by giving appropriate rules in the neighborhoods of the extraordinary points. This new scheme can generate tangent plane continuous surfaces. Some examples are given to show the performance of these new schemes, such as the reconstruction of 3D models extracted from medical images.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Mixed hyperbolic/trigonometric non-stationary subdivision scheme
    Fakhar, R.
    Lamnii, A.
    Nour, M. -Y.
    Zidna, A.
    [J]. MATHEMATICAL SCIENCES, 2022, 16 (02) : 149 - 162
  • [2] Mixed hyperbolic/trigonometric non-stationary subdivision scheme
    R. Fakhar
    A. Lamnii
    M. -Y. Nour
    A. Zidna
    [J]. Mathematical Sciences, 2022, 16 : 149 - 162
  • [3] A non-stationary subdivision scheme for generalizing trigonometric spline surfaces to arbitrary meshes
    Jena, MK
    Shunmugaraj, P
    Das, PC
    [J]. COMPUTER AIDED GEOMETRIC DESIGN, 2003, 20 (02) : 61 - 77
  • [4] Improved Butterfly Subdivision Scheme for Meshes with Arbitrary Topology
    张辉
    马永有
    张成
    蒋寿伟
    [J]. Journal of Beijing Institute of Technology, 2005, (02) : 217 - 220
  • [5] α-B-splines non-stationary subdivision schemes for grids of arbitrary topology design
    Barrera, D.
    Lamnii, A.
    Nour, M-Y
    Zidna, A.
    [J]. COMPUTERS & GRAPHICS-UK, 2022, 108 : 34 - 48
  • [6] 6-Point Non-Stationary Subdivision Scheme by Hyperbolic B-Spline
    Bajwa, Asmat Naz
    Dehraj, Sanaullah
    Bari, Mehwish
    Aasoori, Sunny Kumar
    Memon, Muhammad
    [J]. INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND NETWORK SECURITY, 2020, 20 (04): : 132 - 138
  • [7] A New Ternary Interpolatory Subdivision Scheme for Polyhedral Meshes with Arbitrary Topology
    Zheng, Hong-Chan
    Peng, Guo-Hua
    Ye, Zheng-Lin
    Pan, Lu-Lu
    [J]. ISND 2007: PROCEEDINGS OF THE 2007 INTERNATIONAL SYMPOSIUM ON NONLINEAR DYNAMICS, PTS 1-4, 2008, 96
  • [8] A non-stationary subdivision scheme for the construction of deformable models with sphere-like topology
    Badoual, Anais
    Novara, Paola
    Romani, Lucia
    Schmitter, Daniel
    Unser, Michael
    [J]. GRAPHICAL MODELS, 2017, 94 : 38 - 51
  • [9] Construction of Trigonometric Box Splines and the Associated Non-Stationary Subdivision Schemes
    Jena H.
    Jena M.K.
    [J]. International Journal of Applied and Computational Mathematics, 2021, 7 (4)
  • [10] Ternary three point non-stationary subdivision scheme
    Siddiqi, Shahid S.
    Younis, Muhammad
    [J]. Research Journal of Applied Sciences, Engineering and Technology, 2012, 4 (13) : 1875 - 1882