Specific and coordinated control of indolic and aliphatic glucosinolate biosynthesis by R2R3-MYB transcription factors in Arabidopsis thaliana

被引:0
|
作者
Tamara Gigolashvili
Bettina Berger
Ulf-Ingo Flügge
机构
[1] Botanisches Institut der Universität zu Köln,
来源
Phytochemistry Reviews | 2009年 / 8卷
关键词
Glucosinolate biosynthesis; Gene regulation; MYB factors; Biotic stress;
D O I
暂无
中图分类号
学科分类号
摘要
Five members of subgroup 12 R2R3-MYB transcription factors, namely MYB51, MYB122, MYB28, MYB29 and MYB76, are novel regulators of glucosinolate biosynthesis in Arabidopsis thaliana. Overexpression of MYB51 and MYB122 led to an increased accumulation of tryptophan-derived indolic glucosinolates whereas MYB28, MYB29 and MYB76 overexpression lines showed an increase in methionine-derived aliphatic glucosinolates. Likewise, disruption of the corresponding genes caused a significant downregulation of indolic and aliphatic glucosinolates, respectively. Expression analysis of promoter-GUS fusions revealed promoter activities at the sites of glucosinolate synthesis and accumulation. Indolic glucosinolate regulators were mainly found in vegetative organs and roots, whereas aliphatic glucosinolate regulators were preferentially expressed in generative organs. Mechanical stimuli such as touch or wounding induced a transient expression of the regulators and overexpression of MYB28 and MYB51 reduced insect performance demonstrating the role of these transcription factors in plant biotic responses. The subgroup 12 R2R3-MYB transcription factors interdependently control the response to biotic challenges. For the regulation of methionine-derived glucosinolates, the coordinated activation of MYB28, MYB76 and MYB29 is required, whereas MYB51, MYB122 and the sixth member of subgroup 12 R2R3-MYB transcription factors, the previously described ATR1/MYB34, are involved in the regulation of tryptophan-derived glucosinolates. Because these two pathways are reciprocally inhibiting each other, a metabolic balance between both biosynthetic pathways can be accomplished in plants exposed to continuous biotic challenges.
引用
收藏
页码:3 / 13
页数:10
相关论文
共 50 条
  • [41] Large-scale analysis of putative Euphorbiaceae R2R3-MYB transcription factors identifies a MYB involved in seed oil biosynthesis
    Yunpeng Cao
    Tingting Fan
    Lihu Wang
    Lin Zhang
    Yanli Li
    BMC Plant Biology, 23
  • [42] Large-scale analysis of putative Euphorbiaceae R2R3-MYB transcription factors identifies a MYB involved in seed oil biosynthesis
    Cao, Yunpeng
    Fan, Tingting
    Wang, Lihu
    Zhang, Lin
    Li, Yanli
    BMC PLANT BIOLOGY, 2023, 23 (01)
  • [43] Global dissection of R2R3-MYB in Pogostemon cablin uncovers a species-specific R2R3-MYB clade
    Zeng, Ying
    Li, Zhipeng
    Chen, Yiqiong
    Li, Wanying
    Wang, Hong-bin
    Shen, Yanting
    GENOMICS, 2023, 115 (04)
  • [44] Involvement of an R2R3-MYB transcription factor gene AtMYB118 in embryogenesis in Arabidopsis
    Yunfei Zhang
    Guangyu Cao
    Li-Jia Qu
    Hongya Gu
    Plant Cell Reports, 2009, 28 : 337 - 346
  • [45] Involvement of an R2R3-MYB transcription factor gene AtMYB118 in embryogenesis in Arabidopsis
    Zhang, Yunfei
    Cao, Guangyu
    Qu, Li-Jia
    Gu, Hongya
    PLANT CELL REPORTS, 2009, 28 (03) : 337 - 346
  • [46] Genome-Wide Identification and Evolution Analysis of R2R3-MYB Gene Family Reveals S6 Subfamily R2R3-MYB Transcription Factors Involved in Anthocyanin Biosynthesis in Carrot
    Duan, Ao-Qi
    Tan, Shan-Shan
    Deng, Yuan-Jie
    Xu, Zhi-Sheng
    Xiong, Ai-Sheng
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (19)
  • [47] Anthocyanin biosynthesis in pears is regulated by a R2R3-MYB transcription factor PyMYB10
    Shouqian Feng
    Yanling Wang
    Song Yang
    Yuting Xu
    Xuesen Chen
    Planta, 2010, 232 : 245 - 255
  • [48] An R2R3-MYB transcription factor as a negative regulator of the flavonoid biosynthesis pathway in Ginkgo biloba
    Feng Xu
    Yingjing Ning
    Weiwei Zhang
    Yongling Liao
    Linling Li
    Hua Cheng
    Shuiyuan Cheng
    Functional & Integrative Genomics, 2014, 14 : 177 - 189
  • [49] Characterization of a Citrus R2R3-MYB Transcription Factor that Regulates the Flavonol and Hydroxycinnamic Acid Biosynthesis
    Liu, Chaoyang
    Long, Jianmei
    Zhu, Kaijie
    Liu, Linlin
    Yang, Wei
    Zhang, Hongyan
    Li, Li
    Xu, Qiang
    Deng, Xiuxin
    SCIENTIFIC REPORTS, 2016, 6
  • [50] The Paeonia qiui R2R3-MYB Transcription Factor PqMYB113 Positively Regulates Anthocyanin Accumulation in Arabidopsis thaliana and Tobacco
    Liu, Xiaokun
    Duan, Jingjing
    Huo, Dan
    Li, Qinqin
    Wang, Qiaoyun
    Zhang, Yanlong
    Niu, Lixin
    Luo, Jianrang
    FRONTIERS IN PLANT SCIENCE, 2022, 12