Closed convex sets with an open or closed Gauss range

被引:0
|
作者
Juan Enrique Martínez-Legaz
Cornel Pintea
机构
[1] Universitat Autònoma de Barcelona,Department of Economics and Economic History
[2] BGSMath,Faculty of Mathematics and Computer Science
[3] Babeş-Bolyai University,undefined
来源
Mathematical Programming | 2021年 / 189卷
关键词
Closed convex set; Gauss map; Gauss range; Motzkin decomposable convex set; Minkowski convex set; 52A20; 53A07;
D O I
暂无
中图分类号
学科分类号
摘要
We characterize the closed convex subsets of Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^{n}$$\end{document} which have open or closed Gauss ranges. Some special attention is paid to epigraphs of lower semicontinuous convex functions.
引用
收藏
页码:433 / 454
页数:21
相关论文
共 50 条
  • [21] On inclusion and summands of bounded closed convex sets
    Grzybowski, J
    Urbanski, R
    ACTA MATHEMATICA HUNGARICA, 2005, 106 (04) : 293 - 300
  • [22] On the reduction of pairs of bounded closed convex sets
    Grzybowski, J.
    Pallaschke, D.
    Urbanski, R.
    STUDIA MATHEMATICA, 2008, 189 (01) : 1 - 12
  • [23] On closed sets with convex projections in Hilbert space
    Barov, Stoyu
    Dijkstra, Jan J.
    FUNDAMENTA MATHEMATICAE, 2007, 197 : 17 - 33
  • [24] Convex sets which are intersections of closed balls
    Granero, AS
    Moreno, JP
    Phelps, RR
    ADVANCES IN MATHEMATICS, 2004, 183 (01) : 183 - 208
  • [25] On the Stability of the Motzkin Representation of Closed Convex Sets
    M. A. Goberna
    M. I. Todorov
    Set-Valued and Variational Analysis, 2013, 21 : 635 - 647
  • [26] On the closedness of the algebraic difference of closed convex sets
    Adly, S
    Ernst, E
    Théra, M
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2003, 82 (09): : 1219 - 1249
  • [27] Normability via the Convergence of Closed and Convex Sets
    S. Dancs
    P. Medvegyev
    Gy. Magyarkuti
    Journal of Optimization Theory and Applications, 2011, 150
  • [28] Minimal pairs of bounded closed convex sets
    Grzybowski, J
    Urbanski, R
    STUDIA MATHEMATICA, 1997, 126 (01) : 95 - 99
  • [29] On inclusion and summands of bounded closed convex sets
    J. Grzybowski
    R. Urbański
    Acta Mathematica Hungarica, 2005, 106 : 293 - 300
  • [30] ASYMPTOTIC DUALITY OVER CLOSED CONVEX SETS
    BENISRAE.A
    KORTANEK, KO
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 16 (03): : 515 - &