Closed convex sets with an open or closed Gauss range

被引:0
|
作者
Juan Enrique Martínez-Legaz
Cornel Pintea
机构
[1] Universitat Autònoma de Barcelona,Department of Economics and Economic History
[2] BGSMath,Faculty of Mathematics and Computer Science
[3] Babeş-Bolyai University,undefined
来源
Mathematical Programming | 2021年 / 189卷
关键词
Closed convex set; Gauss map; Gauss range; Motzkin decomposable convex set; Minkowski convex set; 52A20; 53A07;
D O I
暂无
中图分类号
学科分类号
摘要
We characterize the closed convex subsets of Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^{n}$$\end{document} which have open or closed Gauss ranges. Some special attention is paid to epigraphs of lower semicontinuous convex functions.
引用
收藏
页码:433 / 454
页数:21
相关论文
共 50 条
  • [1] Closed convex sets with an open or closed Gauss range
    Martinez-Legaz, Juan Enrique
    Pintea, Cornel
    MATHEMATICAL PROGRAMMING, 2021, 189 (1-2) : 433 - 454
  • [2] On the Gauss Range of a Closed Convex Set
    Martinez-Legaz, Juan Enrique
    Pintea, Cornel
    JOURNAL OF CONVEX ANALYSIS, 2023, 30 (04) : 1203 - 1216
  • [3] CLOSED RANGE THEOREMS FOR CONVEX SETS AND LINEAR LIFTINGS
    ANDO, T
    PACIFIC JOURNAL OF MATHEMATICS, 1973, 44 (02) : 393 - 410
  • [4] On closed sets with convex projections
    Barov, S
    Cobb, J
    Dijkstra, JJ
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2002, 65 : 154 - 166
  • [5] Closed and convex fuzzy sets
    Syau, YR
    FUZZY SETS AND SYSTEMS, 2000, 110 (02) : 287 - 291
  • [6] On convergence of closed convex sets
    Lohne, Andreas
    Zalinescu, Constantin
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 319 (02) : 617 - 634
  • [7] On Open and Closed Convex Codes
    Cruz, Joshua
    Giusti, Chad
    Itskov, Vladimir
    Kronholm, Bill
    DISCRETE & COMPUTATIONAL GEOMETRY, 2019, 61 (02) : 247 - 270
  • [8] On Open and Closed Convex Codes
    Joshua Cruz
    Chad Giusti
    Vladimir Itskov
    Bill Kronholm
    Discrete & Computational Geometry, 2019, 61 : 247 - 270
  • [9] EXTREMAL STRUCTURE OF CLOSED CONVEX SETS
    ASIMOW, LA
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 16 (03): : 503 - &
  • [10] Closed convex sets of Minkowski type
    Martinez-Legaz, J. E.
    Pintea, Cornel
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 444 (02) : 1195 - 1202