Some Carleson measures for the Hilbert–Hardy space of tube domains over symmetric cones

被引:0
|
作者
David Békollé
Benoît F. Sehba
机构
[1] University of Ngaoundéré,Faculty of Science, Department of Mathematics
[2] University of Ghana,Department of Mathematics
来源
关键词
Symmetric cones; Hardy spaces; Bergman spaces; Carleson measures; Maximal function; 32A35; 32A36; 32A50; 32M15;
D O I
暂无
中图分类号
学科分类号
摘要
In the setting of a general tube domain over a symmetric cone, we obtain a full characterization of measures of the form φ(y)dxdy\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi (y)\,dxdy$$\end{document} which are Carleson measures for the Hilbert–Hardy space; for large derivatives, we also obtain a full characterization of general positive measures for which the corresponding embedding operator is continuous. Restricting to the case of the Lorentz cone of dimension three, we prove that by freezing one or two secondary variables, the problem of embedding derivatives of the Hilbert–Hardy space into Lebesgue spaces reduces to the characterization of Carleson measures for Hilbert–Bergman spaces of the upper-half plane or the product of two upper-half planes.
引用
收藏
页码:585 / 610
页数:25
相关论文
共 50 条
  • [1] Some Carleson measures for the Hilbert-Hardy space of tube domains over symmetric cones
    Bekolle, David
    Sehba, Benoit F.
    EUROPEAN JOURNAL OF MATHEMATICS, 2019, 5 (02) : 585 - 610
  • [2] The Duren–Carleson Theorem in Tube Domains over Symmetric Cones
    David Békollé
    Benoit F. Sehba
    Edgar L. Tchoundja
    Integral Equations and Operator Theory, 2016, 86 : 475 - 494
  • [3] The Duren-Carleson Theorem in Tube Domains over Symmetric Cones
    Bekolle, David
    Sehba, Benoit F.
    Tchoundja, Edgar L.
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2016, 86 (04) : 475 - 494
  • [4] Carleson Embeddings and Two Operators on Bergman Spaces of Tube Domains over Symmetric Cones
    Nana, Cyrille
    Sehba, Benoit Florent
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2015, 83 (02) : 151 - 178
  • [5] Carleson Embeddings and Two Operators on Bergman Spaces of Tube Domains over Symmetric Cones
    Cyrille Nana
    Benoît Florent Sehba
    Integral Equations and Operator Theory, 2015, 83 : 151 - 178
  • [6] Analytic Besov spaces and Hardy-type inequalities in tube domains over symmetric cones
    Bekolle, D.
    Bonami, A.
    Garrigos, G.
    Ricci, F.
    Sehba, B.
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2010, 647 : 25 - 56
  • [7] Hankel Operators on Bergman Spaces of Tube Domains over Symmetric Cones
    Benoit Florent Sehba
    Integral Equations and Operator Theory, 2008, 62 : 233 - 245
  • [8] Bergman-Lorentz spaces on tube domains over symmetric cones
    Bekolle, David
    Gonessa, Jocelyn
    Nana, Cyrille
    NEW YORK JOURNAL OF MATHEMATICS, 2018, 24 : 902 - 928
  • [9] Hankel operators on Bergman spaces of tube domains over symmetric cones
    Sehba, Benoit Florent
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2008, 62 (02) : 233 - 245
  • [10] EMBEDDING RELATIONS AND BOUNDEDNESS OF THE MULTIFUNCTIONAL OPERATORS IN TUBE DOMAINS OVER SYMMETRIC CONES
    Arsenovic, Milos
    Shamoyan, Romi F.
    FILOMAT, 2011, 25 (04) : 109 - 126