The Symmetrized Square-Root Potential: Exact Solutions and Application to the Two-Dimensional Massless Dirac Equation

被引:0
|
作者
Axel Schulze-Halberg
机构
[1] Indiana University Northwest,Department of Mathematics and Actuarial Science and Department of Physics
来源
Few-Body Systems | 2018年 / 59卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We determine bound-state solutions and associated energy eigenvalues of a boundary-value problem that is governed by the Schrödinger equation for a symmetrized, inverse square-root potential. We use these results to construct a scalar potential for which the two-dimensional massless Dirac equation admits zero-energy solutions.
引用
收藏
相关论文
共 50 条
  • [21] Two-dimensional gas of massless Dirac fermions in graphene
    Novoselov, KS
    Geim, AK
    Morozov, SV
    Jiang, D
    Katsnelson, MI
    Grigorieva, IV
    Dubonos, SV
    Firsov, AA
    NATURE, 2005, 438 (7065) : 197 - 200
  • [22] The Talbot Effect for two-dimensional massless Dirac fermions
    Walls, Jamie D.
    Hadad, Daniel
    SCIENTIFIC REPORTS, 2016, 6
  • [23] Topological delocalization of two-dimensional massless dirac fermions
    Nomura, Kentaro
    Koshino, Mikito
    Ryu, Shinsei
    PHYSICAL REVIEW LETTERS, 2007, 99 (14)
  • [24] Two-dimensional gas of massless Dirac fermions in graphene
    K. S. Novoselov
    A. K. Geim
    S. V. Morozov
    D. Jiang
    M. I. Katsnelson
    I. V. Grigorieva
    S. V. Dubonos
    A. A. Firsov
    Nature, 2005, 438 : 197 - 200
  • [25] Exact finite difference scheme for an advection equation having square-root dynamics
    Mickens, Ronald E.
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2008, 14 (10-11) : 1149 - 1157
  • [26] Two-Dimensional Rossby Waves:Exact Solutions to Petviashvili Equation
    ZHAO Qiang LIU Shi-Kuo School of Physics
    Communications in Theoretical Physics, 2006, 45 (03) : 414 - 416
  • [27] Two-dimensional Rossby waves: Exact solutions to Petviashvili equation
    Zhao, Q
    Zhao, Y
    Liu, SK
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2006, 45 (03) : 414 - 416
  • [28] Positive solutions for a relativistic nonlinear Schrodinger equation with square-root nonlinearity
    Wang, Youjun
    Zhang, Yimin
    JOURNAL OF MATHEMATICAL PHYSICS, 2020, 61 (11)
  • [29] Analytical solutions of the two-dimensional Dirac equation for a topological channel intersection
    Anglin, J. R.
    Schulz, A.
    PHYSICAL REVIEW B, 2017, 95 (04)
  • [30] Exact solutions of the 2D Schrodinger equation with the inverse square root potential
    Sun, Guo-Hua
    Chen, Chang-Yuan
    Dong, Shi-Hai
    LASER PHYSICS, 2022, 32 (03)