Soliton, breather and rogue wave solutions of the coupled Gerdjikov–Ivanov equation via Darboux transformation

被引:0
|
作者
Ting Ji
Yunyun Zhai
机构
[1] Zhengzhou University,School of Mathematics and Statistics
来源
Nonlinear Dynamics | 2020年 / 101卷
关键词
Coupled Gerdjikov–Ivanov equation; Darboux transformation; Exact solutions;
D O I
暂无
中图分类号
学科分类号
摘要
The coupled Gerdjikov–Ivanov (cGI) equation, associated with a 3×3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3\times 3$$\end{document} matrix Lax pair, is an important integrable system that can be reduced to the third kind of derivative nonlinear Schrödinger equation, i.e., Gerdjikov–Ivanov equation. Based on the symmetric relations of the Lax pair, 2N-fold Darboux transformation for the cGI equation is constructed. As an application of the Darboux transformation, we obtain some exact solutions of the cGI equation, including bright–bright soliton, dark–bright soliton, Ma breather, breather fission, soliton fusion and dark–bright rogue wave.
引用
收藏
页码:619 / 631
页数:12
相关论文
共 50 条
  • [21] Darboux-Ba?cklund transformation, breather and rogue wave solutions for the discrete Hirota equation
    Zhu, Yujie
    Yang, Yunqing
    Li, Xin
    [J]. OPTIK, 2021, 236
  • [22] Extended generalized Darboux transformation to hybrid rogue wave and breather solutions for a nonlinear Schrodinger equation
    Li, Bang-Qing
    Ma, Yu-Lan
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2020, 386
  • [23] Darboux-Backlund transformation, breather and rogue wave solutions for Ablowitz-Ladik equation
    Yang, Yunqing
    Zhu, Yujie
    [J]. OPTIK, 2020, 217
  • [24] Coupled Gerdjikov-Ivanov System and its Exact Solutions through Darboux Transformation
    Abbas, Zaheer
    [J]. PUNJAB UNIVERSITY JOURNAL OF MATHEMATICS, 2022, 54 (03): : 163 - 180
  • [25] Darboux transformation and exact solutions of the variable-coefficient nonlocal Gerdjikov–Ivanov equation
    Yuru Hu
    Feng Zhang
    Xiangpeng Xin
    Hanze Liu
    [J]. Theoretical and Mathematical Physics, 2022, 211 : 460 - 472
  • [26] Soliton, breather, rogue wave and continuum limit for the spatial discrete Hirota equation by Darboux-Backlund transformation
    Fan, Fang-Cheng
    Xu, Zhi-Guo
    Shi, Shao-Yun
    [J]. NONLINEAR DYNAMICS, 2023, 111 (11) : 10393 - 10405
  • [27] Darboux transformation, positon solution, and breather solution of the third-order flow Gerdjikov-Ivanov equation
    Liu, Shuzhi
    Li, Ning-Yi
    Dong, Xiaona
    Li, Maohua
    [J]. Chinese Physics B, 2024, 34 (01)
  • [28] Soliton, breather, rogue wave and continuum limit for the spatial discrete Hirota equation by Darboux–Bäcklund transformation
    Fang-Cheng Fan
    Zhi-Guo Xu
    Shao-Yun Shi
    [J]. Nonlinear Dynamics, 2023, 111 : 10393 - 10405
  • [29] Some localized wave solutions for the coupled Gerdjikov-Ivanov equation
    Dong, Min-Jie
    Tian, Li-Xin
    Wei, Jing-Dong
    Wang, Yun
    [J]. APPLIED MATHEMATICS LETTERS, 2021, 122
  • [30] DARBOUX TRANSFORMATION AND EXACT SOLUTIONS OF THE VARIABLE-COEFFICIENT NONLOCAL GERDJIKOV-IVANOV EQUATION
    Hu, Yuru
    Zhang, Feng
    Xin, Xiangpeng
    Liu, Hanze
    [J]. THEORETICAL AND MATHEMATICAL PHYSICS, 2022, 211 (01) : 460 - 472