A convergence analysis for directional two-step Newton methods

被引:0
|
作者
Ioannis K. Argyros
Saïd Hilout
机构
[1] Cameron University,Department of Mathematics Sciences
[2] Poitiers University,Laboratoire de Mathématiques et Applications
来源
Numerical Algorithms | 2010年 / 55卷
关键词
Directional two-step Newton method; Hilbert space; Nonlinear equation; Lipschitz/center-Lipschitz condition; Recurrent functions; Recurrent sequences; Newton–Kantorovich-type hypotheses; 65H05; 65H10; 49M15;
D O I
暂无
中图分类号
学科分类号
摘要
A semilocal convergence analysis for directional two-step Newton methods in a Hilbert space setting is provided in this study. Two different techniques are used to generate the sufficient convergence results, as well as the corresponding error bounds. The first technique uses our new idea of recurrent functions, whereas the second uses recurrent sequences. We also compare the results of the two techniques.
引用
收藏
页码:503 / 528
页数:25
相关论文
共 50 条