Definable choice for a class of weakly o-minimal theories

被引:0
|
作者
Michael C. Laskowski
Christopher S. Shaw
机构
[1] University of Maryland,Department of Mathematics
[2] Columbia College Chicago,Department of Science and Mathematics
来源
Archive for Mathematical Logic | 2016年 / 55卷
关键词
Weakly o-minimal; Skolem functions; Definable choice; 03C64;
D O I
暂无
中图分类号
学科分类号
摘要
Given an o-minimal structure M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal M}$$\end{document} with a group operation, we show that for a properly convex subset U, the theory of the expanded structure M′=(M,U)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal M}'=({\mathcal M},U)$$\end{document} has definable Skolem functions precisely when M′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal M}'$$\end{document} is valuational. As a corollary, we get an elementary proof that the theory of any such M′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal M}'$$\end{document} does not satisfy definable choice.
引用
收藏
页码:735 / 748
页数:13
相关论文
共 50 条
  • [41] Linearity of groups definable in o-minimal structures
    Olivier Frécon
    Selecta Mathematica, 2017, 23 : 1563 - 1598
  • [42] Measuring definable sets in o-minimal fields
    Jana Maříková
    Masahiro Shiota
    Israel Journal of Mathematics, 2015, 209 : 687 - 714
  • [43] ON EXPANDING COUNTABLY CATEGORICAL WEAKLY O-MINIMAL THEORIES BY BINARY PREDICATES
    Baizhanov, S. S.
    Kulpeshov, B. Sh.
    NEWS OF THE NATIONAL ACADEMY OF SCIENCES OF THE REPUBLIC OF KAZAKHSTAN-SERIES PHYSICO-MATHEMATICAL, 2018, 1 (317): : 18 - 24
  • [44] Criterion for binarity of ℵ0-categorical weakly o-minimal theories
    Kulpeshov, B. Sh.
    ANNALS OF PURE AND APPLIED LOGIC, 2007, 145 (03) : 354 - 367
  • [45] Strongly minimal expansions of (C,+) definable in o-minimal fields
    Hasson, Assaf
    Kowalski, Piotr
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2008, 97 : 117 - 154
  • [46] ALMOST ω-CATEGORICAL WEAKLY o-MINIMAL THEORIES OF CONVEXITY RANK 1
    Kulpeshov, B. Sh.
    Mustafin, T. S.
    SIBERIAN MATHEMATICAL JOURNAL, 2021, 62 (01) : 52 - 65
  • [47] o-minimal theories with an automorphism
    Duby, G
    COMPTES RENDUS MATHEMATIQUE, 2002, 335 (05) : 417 - 420
  • [48] Pillay's conjecture for groups definable in weakly o-minimal non-valuational structures
    Eleftheriou, Pantelis E.
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2021, 53 (04) : 1205 - 1219
  • [49] DIRECTIONAL PROPERTIES OF SETS DEFINABLE IN O-MINIMAL STRUCTURES
    Koike, Satoshi
    Ta Le Loi
    Paunescu, Laurentiu
    Shiota, Masahiro
    ANNALES DE L INSTITUT FOURIER, 2013, 63 (05) : 2017 - 2047
  • [50] HIGHER HOMOTOPY OF GROUPS DEFINABLE IN O-MINIMAL STRUCTURES
    Berarducci, Alessandro
    Mamino, Marcello
    Otero, Margarita
    ISRAEL JOURNAL OF MATHEMATICS, 2010, 180 (01) : 143 - 161