Bayesian Inference Based Parameter Calibration of the LuGre-Friction Model

被引:0
|
作者
C.M. Gehb
S. Atamturktur
R. Platz
T. Melz
机构
[1] Technische Universität Darmstadt,System Reliability, Adaptive Structures, and Machine Acoustics SAM
[2] The Pennsylvania State University,Head of the Department of Architectural Engineering
[3] Fraunhofer Institute for Structural Durability and System Reliability LBF,undefined
来源
Experimental Techniques | 2020年 / 44卷
关键词
friction model; Uncertainty quantification; inference; Parameter calibration;
D O I
暂无
中图分类号
学科分类号
摘要
Load redistribution in smart load bearing mechanical structures can be used to reduce negative effects of damage or to prevent further damage if predefined load paths become unsuitable. Using controlled friction brakes in joints of kinematic links can be a suitable way to add dynamic functionality for desired load path redistribution. Therefore, adequate friction models are needed to predict the friction behavior. Possible models that can be used to model friction vary from simple static to complex dynamic models with increasing sophistication in the representation of friction phenomena. The LuGre-model is a widely used dynamic friction model for friction compensation in high precision control systems. It needs six parameters for describing the friction behavior. These parameters are coupled to an unmeasurable internal state variable, therefore, parameter identification is challenging. Conventionally, optimization algorithms are used to identify the LuGre-parameters deterministically. In this paper, the parameter identification and calibration is formulated to achieve model prediction that is statistically consistent with the experimental data. By use of the R2 sensitivity analysis, the most influential parameters are selected for calibration. Subsequently, the Bayesian inference based calibration procedure using experimental data is performed. Uncertainty represented in former wide parameter ranges can be reduced and, thus, model prediction accuracy can be increased.
引用
收藏
页码:369 / 382
页数:13
相关论文
共 50 条
  • [41] Adaptive sliding friction compensation method based on modified LuGre model
    Tan, Wenbin
    Li, Xingfei
    Qiu, Zurong
    Xiang, Hongbiao
    Zhang, Chenyang
    Tianjin Daxue Xuebao (Ziran Kexue yu Gongcheng Jishu Ban)/Journal of Tianjin University Science and Technology, 2015, 48 (05): : 463 - 467
  • [42] Analytical describing function of LuGre friction model
    Ahmad Mashayekhi
    Saeed Behbahani
    Ali Nahvi
    Mehdi Keshmiri
    Mehdi Shakeri
    International Journal of Intelligent Robotics and Applications, 2022, 6 : 437 - 448
  • [43] Adaptive friction compensation for a class of mechanical systems based on LuGre model
    Chen, Pengnian
    Liu, Xiangbin
    Yan, Qiuzhen
    INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2022, 32 (07) : 4510 - 4534
  • [44] Adaptive Friction Compensation Based on the LuGre Model for a Pneumatic Rodless Cylinder
    Schindele, Dominik
    Aschemann, Harald
    IECON: 2009 35TH ANNUAL CONFERENCE OF IEEE INDUSTRIAL ELECTRONICS, VOLS 1-6, 2009, : 1337 - +
  • [45] Parameter identification and sensitivity analysis of an improved LuGre friction model for magnetorheological elastomer base isolator
    Yu, Yang
    Li, Yancheng
    Li, Jianchun
    MECCANICA, 2015, 50 (11) : 2691 - 2707
  • [46] Simulation-based inference for reliability model selection and parameter calibration: An application to fatigue
    Ben Abdessalem, Anis
    QUALITY AND RELIABILITY ENGINEERING INTERNATIONAL, 2024, 40 (04) : 1855 - 1874
  • [47] On the LuGre model and friction-induced hysteresis
    Padthe, Ashwani K.
    Oh, JinHyoung
    Bernstein, Dennis S.
    2006 AMERICAN CONTROL CONFERENCE, VOLS 1-12, 2006, 1-12 : 3247 - 3252
  • [48] Analytical describing function of LuGre friction model
    Mashayekhi, Ahmad
    Behbahani, Saeed
    Nahvi, Ali
    Keshmiri, Mehdi
    Shakeri, Mehdi
    INTERNATIONAL JOURNAL OF INTELLIGENT ROBOTICS AND APPLICATIONS, 2022, 6 (03) : 437 - 448
  • [49] A Modification of the LuGre Friction Model for Potential Energy
    Suzuki, Yoshihiko
    Chen, Gan
    2020 59TH ANNUAL CONFERENCE OF THE SOCIETY OF INSTRUMENT AND CONTROL ENGINEERS OF JAPAN (SICE), 2020, : 1791 - 1796
  • [50] On Lugre Friction Model to Mitigate Nonideal Vibrations
    Palacios Felix, Jorge Luis
    Balthazar, Jose Manoel
    Brasil, Reyolando M. L. R. F.
    Pontes, Bento Rodrigues, Jr.
    JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2009, 4 (03): : 1 - 5