Bayesian Inference Based Parameter Calibration of the LuGre-Friction Model

被引:0
|
作者
C.M. Gehb
S. Atamturktur
R. Platz
T. Melz
机构
[1] Technische Universität Darmstadt,System Reliability, Adaptive Structures, and Machine Acoustics SAM
[2] The Pennsylvania State University,Head of the Department of Architectural Engineering
[3] Fraunhofer Institute for Structural Durability and System Reliability LBF,undefined
来源
Experimental Techniques | 2020年 / 44卷
关键词
friction model; Uncertainty quantification; inference; Parameter calibration;
D O I
暂无
中图分类号
学科分类号
摘要
Load redistribution in smart load bearing mechanical structures can be used to reduce negative effects of damage or to prevent further damage if predefined load paths become unsuitable. Using controlled friction brakes in joints of kinematic links can be a suitable way to add dynamic functionality for desired load path redistribution. Therefore, adequate friction models are needed to predict the friction behavior. Possible models that can be used to model friction vary from simple static to complex dynamic models with increasing sophistication in the representation of friction phenomena. The LuGre-model is a widely used dynamic friction model for friction compensation in high precision control systems. It needs six parameters for describing the friction behavior. These parameters are coupled to an unmeasurable internal state variable, therefore, parameter identification is challenging. Conventionally, optimization algorithms are used to identify the LuGre-parameters deterministically. In this paper, the parameter identification and calibration is formulated to achieve model prediction that is statistically consistent with the experimental data. By use of the R2 sensitivity analysis, the most influential parameters are selected for calibration. Subsequently, the Bayesian inference based calibration procedure using experimental data is performed. Uncertainty represented in former wide parameter ranges can be reduced and, thus, model prediction accuracy can be increased.
引用
收藏
页码:369 / 382
页数:13
相关论文
共 50 条
  • [1] Bayesian Inference Based Parameter Calibration of the LuGre-Friction Model
    Gehb, C. M.
    Atamturktur, S.
    Platz, R.
    Melz, T.
    EXPERIMENTAL TECHNIQUES, 2020, 44 (03) : 369 - 382
  • [2] ON THE PARAMETER IDENTIFICATION OF LUGRE TIRE FRICTION MODEL
    Matsutani, Yusuke
    Sugiyama, Hiroyuki
    PROCEEDINGS OF THE ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, 2013, VOL 7B, 2014,
  • [3] Parameter Identification of LuGre Friction Model for Robot Joints
    Zheng, Yaqing
    ADVANCED MECHANICAL DESIGN, PTS 1-3, 2012, 479-481 : 1084 - 1090
  • [4] Research on parameter identification of modified friction LuGre model based distributions theory
    Zglimbea, Radu
    Finca, Virginia
    Greaban, Emilian
    Constantin, Marin
    WSEAS Transactions on Systems, 2009, 8 (08): : 978 - 987
  • [5] Friction compensation based on LuGre model
    Freidovich, Leonid
    Robertsson, Anders
    Shiriaev, Anton
    Johansson, Rolf
    PROCEEDINGS OF THE 45TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-14, 2006, : 3837 - +
  • [6] Parameter identification for LuGre friction model using genetic algorithms
    Liu, De-Peng
    PROCEEDINGS OF 2006 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-7, 2006, : 3419 - 3422
  • [7] NONLINEAR NORMAL MODES AND THE LUGRE FRICTION MODEL PARAMETER IDENTIFICATION
    Hadji, Abdallah
    Mureithi, Njuki
    PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2014, VOL 4A, 2015,
  • [8] LuGre-Model-Based Friction Compensation
    Freidovich, Leonid
    Robertsson, Anders
    Shiriaev, Anton
    Johansson, Rolf
    IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2010, 18 (01) : 194 - 200
  • [9] Friction compensation of the pendubot based on the LuGre model
    Eom M.W.
    Kim C.-J.
    Chwa D.
    Transactions of the Korean Institute of Electrical Engineers, 2011, 60 (04): : 848 - 855
  • [10] Friction compensation based on LuGre model with modified viscous friction
    Tan, Wen-Bin
    Li, Xing-Fei
    Xiang, Hong-Biao
    Wu, Teng-Fei
    Zhang, Chen-Yang
    Tianjin Daxue Xuebao (Ziran Kexue yu Gongcheng Jishu Ban)/Journal of Tianjin University Science and Technology, 2012, 45 (09): : 824 - 828