Multiplicative dependence between k-Fibonacci and k-Lucas numbers

被引:0
|
作者
Carlos A. Gómez
Jhonny C. Gómez
Florian Luca
机构
[1] Universidad del Valle,Departamento de Matemáticas
[2] University of the Witwatersrand,School of Mathematics
[3] King Abdulaziz University,Research Group in Algebraic Structures and Applications
[4] UNAM,Centro de Ciencias Matemáticas
来源
关键词
Multiplicatively dependent integers; -generalized Fibonacci and Lucas numbers; Applications of lower bounds for nonzero linear forms in logarithms of algebraic numbers; 11B39; 11D61; 11J86;
D O I
暂无
中图分类号
学科分类号
摘要
A generalization of the well-known Fibonacci and Lucas sequences are the k-Fibonacci and k-Lucas sequences with some fixed integer k≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\ge 2$$\end{document}. For these sequences the first k terms are 0,…,0,1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0,\ldots ,0,1$$\end{document} and 0,…,0,2,1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0,\ldots ,0,2,1$$\end{document}, respectively, and each term afterwards is the sum of the preceding k terms. Here we find all pairs of k-Fibonacci and k-Lucas numbers multiplicatively dependent.
引用
收藏
页码:217 / 233
页数:16
相关论文
共 50 条
  • [41] Recurrences for k-Fibonacci Numbers
    Linders, J. C.
    [J]. AMERICAN MATHEMATICAL MONTHLY, 2011, 118 (04): : 374 - 376
  • [42] κ-FIBONACCI NUMBERS AND k-LUCAS NUMBERS IN BEATTY SEQUENCES GENERATED BY POWERS OF METALLIC MEANS
    Noppakaew, Passawan
    Kanwarunyu, Pavita
    Wanitchatchawan, Parit
    [J]. FIBONACCI QUARTERLY, 2023, 61 (02): : 167 - 177
  • [43] On the powers of the k-Fibonacci numbers
    Falcon, Sergio
    [J]. ARS COMBINATORIA, 2016, 127 : 329 - 338
  • [44] ON THE GENERALIZED k-FIBONACCI NUMBERS
    Falcon, Sergio
    [J]. MISKOLC MATHEMATICAL NOTES, 2021, 22 (01) : 193 - 199
  • [45] On k-Fibonacci numbers expressible as product of two Balancing or Lucas-Balancing numbers
    Rihane, Salah Eddine
    [J]. INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2023,
  • [46] Trisection method by k-Lucas numbers
    Demir, Ali
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2008, 198 (01) : 339 - 345
  • [47] Some Identities Involving Common Factors of k-Fibonacci-Like and k-Lucas Numbers
    Sengpanit, Amaraporn
    Makate, Nonthiya
    Thongkamhaeng, Wasana
    [J]. 2015 INTERNATIONAL CONFERENCE ON SCIENCE AND TECHNOLOGY (TICST), 2015, : 458 - 460
  • [48] On k-Fibonacci numbers of arithmetic indexes
    Falcon, Sergio
    Plaza, Angel
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2009, 208 (01) : 180 - 185
  • [49] ON THE INTERSECTION OF k-FIBONACCI AND PELL NUMBERS
    Bravo, Jhon J.
    Gomez, Carlos A.
    Herrera, Jose L.
    [J]. BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2019, 56 (02) : 535 - 547
  • [50] On generalized bicomplex k-Fibonacci numbers
    Yagmur, Tulay
    [J]. NOTES ON NUMBER THEORY AND DISCRETE MATHEMATICS, 2019, 25 (04) : 123 - 133