Conservation of energy for the Euler–Korteweg equations

被引:0
|
作者
Tomasz Dębiec
Piotr Gwiazda
Agnieszka Świerczewska-Gwiazda
Athanasios Tzavaras
机构
[1] University of Warsaw,Institute of Applied Mathematics and Mechanics
[2] Polish Academy of Sciences,Institute of Mathematics
[3] King Abdullah University of Science and Technology (KAUST),Computer, Electrical, Mathematical Sciences and Engineering Division
关键词
76D45; 35G50;
D O I
暂无
中图分类号
学科分类号
摘要
In this article we study the principle of energy conservation for the Euler–Korteweg system. We formulate an Onsager-type sufficient regularity condition for weak solutions of the Euler–Korteweg system to conserve the total energy. The result applies to the system of Quantum Hydrodynamics.
引用
收藏
相关论文
共 50 条
  • [1] Conservation of energy for the Euler-Korteweg equations
    Debiec, Tomasz
    Gwiazda, Piotr
    Swierczewska-Gwiazda, Agnieszka
    Tzavaras, Athanasios
    [J]. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2018, 57 (06)
  • [2] Energy conservation for the weak solutions to the incompressible inhomogeneous Euler–Korteweg equations
    Zhipeng Zhang
    [J]. Zeitschrift für angewandte Mathematik und Physik, 2022, 73
  • [4] Energy conservation for the weak solutions to the incompressible inhomogeneous Euler-Korteweg equations
    Zhang, Zhipeng
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2022, 73 (02):
  • [5] Regularity and Energy Conservation for the Compressible Euler Equations
    Eduard Feireisl
    Piotr Gwiazda
    Agnieszka Świerczewska-Gwiazda
    Emil Wiedemann
    [J]. Archive for Rational Mechanics and Analysis, 2017, 223 : 1375 - 1395
  • [6] On the Energy and Helicity Conservation of the Incompressible Euler Equations
    Wang, Yanqing
    Wei, Wei
    Wu, Gang
    Ye, Yulin
    [J]. JOURNAL OF NONLINEAR SCIENCE, 2024, 34 (04)
  • [7] Regularity and Energy Conservation for the Compressible Euler Equations
    Feireisl, Eduard
    Gwiazda, Piotr
    Swierczewska-Gwiazda, Agnieszka
    Wiedemann, Emil
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2017, 223 (03) : 1375 - 1395
  • [8] On energy conservation for the hydrostatic Euler equations: an Onsager conjecture
    Daniel W. Boutros
    Simon Markfelder
    Edriss S. Titi
    [J]. Calculus of Variations and Partial Differential Equations, 2023, 62
  • [9] Energy conservation for inhomogeneous incompressible and compressible Euler equations
    Nguyen, Quoc-Hung
    Nguyen, Phuoc-Tai
    Tang, Bao Quoc
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 269 (09) : 7171 - 7210
  • [10] Onsager's energy conservation for inhomogeneous Euler equations
    Chen, Robin Ming
    Yu, Cheng
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2019, 131 : 1 - 16