Regularity and Energy Conservation for the Compressible Euler Equations

被引:1
|
作者
Eduard Feireisl
Piotr Gwiazda
Agnieszka Świerczewska-Gwiazda
Emil Wiedemann
机构
[1] Institute of Mathematics of the Academy of Sciences of the Czech Republic,Institute of Mathematics
[2] Polish Academy of Science,Institute of Applied Mathematics and Mechanics
[3] University of Warsaw,Institute of Applied Mathematics
[4] Leibniz University Hannover,undefined
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We give sufficient conditions on the regularity of solutions to the inhomogeneous incompressible Euler and the compressible isentropic Euler systems in order for the energy to be conserved. Our strategy relies on commutator estimates similar to those employed by Constantin et al. for the homogeneous incompressible Euler equations.
引用
收藏
页码:1375 / 1395
页数:20
相关论文
共 50 条
  • [1] Regularity and Energy Conservation for the Compressible Euler Equations
    Feireisl, Eduard
    Gwiazda, Piotr
    Swierczewska-Gwiazda, Agnieszka
    Wiedemann, Emil
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2017, 223 (03) : 1375 - 1395
  • [2] Energy Conservation for the Compressible Euler Equations and Elastodynamics
    Ye, Yulin
    Wang, Yanqing
    JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2025, 27 (01)
  • [3] Energy conservation for inhomogeneous incompressible and compressible Euler equations
    Nguyen, Quoc-Hung
    Nguyen, Phuoc-Tai
    Tang, Bao Quoc
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 269 (09) : 7171 - 7210
  • [4] Regularity and energy conservation for compressible isentropic magnetohydrodynamic equations
    Wu, Zhonger
    Tan, Zhong
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (01) : 533 - 545
  • [5] The role of density in the energy conservation for the isentropic compressible Euler equations
    Wang, Yanqing
    Ye, Yulin
    Yu, Huan
    JOURNAL OF MATHEMATICAL PHYSICS, 2023, 64 (06)
  • [6] ENERGY CONSERVATION FOR THE COMPRESSIBLE EULER AND NAVIER-STOKES EQUATIONS WITH VACUUM
    Akramov, Ibrokhimbek
    Debiec, Tomasz
    Skipper, Jack
    Wiedemann, Emil
    ANALYSIS & PDE, 2020, 13 (03): : 789 - 811
  • [7] Regularity criterion on the energy conservation for the compressible Navier-Stokes equations
    Liang, Zhilei
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2021, 151 (06) : 1954 - 1971
  • [8] Energy conservation of the compressible Euler equations and the Navier-Stokes equations via the gradient
    Ye, Yulin
    Guo, Peixian
    Wang, Yanqing
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2023, 230
  • [9] A regularity result for the free boundary compressible Euler equations of a liquid
    Li, Linfeng
    NONLINEARITY, 2024, 37 (03)
  • [10] Analytical validation of the helicity conservation for the compressible Euler equations
    Ye, Yulin
    Wei, Wei
    Wang, Yanqing
    JOURNAL OF EVOLUTION EQUATIONS, 2025, 25 (01)