The Borsuk–Ulam property for homotopy classes of self-maps of surfaces of Euler characteristic zero

被引:0
|
作者
Daciberg Lima Gonçalves
John Guaschi
Vinicius Casteluber Laass
机构
[1] Universidade de São Paulo,Departamento de Matemática, IME
[2] Normandie Univ.,Departamento de Matemática, IME
[3] UNICAEN,undefined
[4] CNRS,undefined
[5] Laboratoire de Mathématiques Nicolas Oresme UMR CNRS 6139,undefined
[6] Universidade Federal da Bahia,undefined
关键词
Borsuk–Ulam theorem; homotopy class; braid groups; surfaces; 55M20; 57M07; 20F36;
D O I
暂无
中图分类号
学科分类号
摘要
Let M and N be topological spaces such that M admits a free involution τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau $$\end{document}. A homotopy class β∈[M,N]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta \in [ M , N ] $$\end{document} is said to have the Borsuk–Ulam property with respect toτ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau $$\end{document} if for every representative map f:M→N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f:\,M \rightarrow N$$\end{document} of β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document}, there exists a point x∈M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x \in M$$\end{document} such that f(τ(x))=f(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f ( \tau ( x) ) = f(x)$$\end{document}. In the case where M is a compact, connected manifold without boundary and N is a compact, connected surface without boundary different from the 2-sphere and the real projective plane, we formulate this property in terms of the pure and full 2-string braid groups of N, and of the fundamental groups of M and the orbit space of M with respect to the action of τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau $$\end{document}. If M=N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M=N$$\end{document} is either the 2-torus T2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {T}^2$$\end{document} or the Klein bottle K2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {K}^2$$\end{document}, we then solve the problem of deciding which homotopy classes of [M, M] have the Borsuk–Ulam property. First, if τ:T2→T2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau :\,\mathbb {T}^2\rightarrow \mathbb {T}^2$$\end{document} is a free involution that preserves orientation, we show that no homotopy class of [T2,T2]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[ \mathbb {T}^2, \mathbb {T}^2]$$\end{document} has the Borsuk–Ulam property with respect to τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau $$\end{document}. Second, we prove that up to a certain equivalence relation, there is only one class of free involutions τ:T2→T2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau :\,\mathbb {T}^2\rightarrow \mathbb {T}^2$$\end{document} that reverse orientation, and for such involutions, we classify the homotopy classes in [T2,T2]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[\mathbb {T}^2, \mathbb {T}^2]$$\end{document} that have the Borsuk–Ulam property with respect to τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau $$\end{document} in terms of the induced homomorphism on the fundamental group. Finally, we show that if τ:K2→K2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau :\,\mathbb {K}^2\rightarrow \mathbb {K}^2$$\end{document} is a free involution, then a homotopy class of [K2,K2]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[\mathbb {K}^2, \mathbb {K}^2]$$\end{document} has the Borsuk–Ulam property with respect to τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau $$\end{document} if and only if the given homotopy class lifts to the torus.
引用
收藏
相关论文
共 46 条
  • [21] HOMOTOPY MINIMAL PERIOD SELF-MAPS ON FLAT MANIFOLDS WITH CYCLIC HOLONOMIES
    Liang, Zhibin
    Zhao, Xuezhi
    ASIAN JOURNAL OF MATHEMATICS, 2013, 17 (04) : 645 - 651
  • [22] ON H-SPACES WHICH ARE THE HOMOTOPY FIBERS OF SELF-MAPS OF SPHERES
    KONO, A
    OHSITA, A
    JOURNAL OF MATHEMATICS OF KYOTO UNIVERSITY, 1989, 29 (03): : 455 - 457
  • [23] THE HOMOTOPY CLASSIFICATION OF SELF-MAPS OF INFINITE QUATERNIONIC PROJECTIVE-SPACE
    MISLIN, G
    QUARTERLY JOURNAL OF MATHEMATICS, 1987, 38 (150): : 245 - 257
  • [24] Topological entropy of continuous self-maps on closed surfaces
    Garcia Guirao, Juan Luis
    Llibre, Jaume
    Gao, Wei
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2020, 26 (02) : 203 - 208
  • [25] Periodic point free continuous self-maps on graphs and surfaces
    Llibre, Jaume
    TOPOLOGY AND ITS APPLICATIONS, 2012, 159 (08) : 2228 - 2231
  • [26] On the classification of rational homotopy types of elliptic spaces with homotopy Euler characteristic zero for dim < 8
    Mimura, Mamoru
    Shiga, Hiroo
    BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2011, 18 (05) : 925 - 939
  • [27] Fixed point index bounds for self-maps on closed surfaces
    Goncalves, D. L.
    Kelly, M. R.
    BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2017, 24 (04) : 673 - 688
  • [28] UNIFORM MAPS ON SURFACES OF NON-NEGATIVE EULER CHARACTERISTIC
    Pellicer, Daniel
    Weiss, Asia Ivic
    SYMMETRY-CULTURE AND SCIENCE, 2011, 22 (1-2): : 159 - 196
  • [29] Zariski dense orbits for regular self-maps of tori in positive characteristic
    Ghioca, Dragos
    Saleh, Sina
    NEW YORK JOURNAL OF MATHEMATICS, 2021, 27 : 1274 - 1304
  • [30] HOMOTOPY CLASSIFICATION OF SELF-MAPS OF BG VIA G-ACTIONS .2.
    JACKOWSKI, S
    MCCLURE, J
    OLIVER, B
    ANNALS OF MATHEMATICS, 1992, 135 (02) : 227 - 270