The Borsuk–Ulam property for homotopy classes of self-maps of surfaces of Euler characteristic zero

被引:0
|
作者
Daciberg Lima Gonçalves
John Guaschi
Vinicius Casteluber Laass
机构
[1] Universidade de São Paulo,Departamento de Matemática, IME
[2] Normandie Univ.,Departamento de Matemática, IME
[3] UNICAEN,undefined
[4] CNRS,undefined
[5] Laboratoire de Mathématiques Nicolas Oresme UMR CNRS 6139,undefined
[6] Universidade Federal da Bahia,undefined
关键词
Borsuk–Ulam theorem; homotopy class; braid groups; surfaces; 55M20; 57M07; 20F36;
D O I
暂无
中图分类号
学科分类号
摘要
Let M and N be topological spaces such that M admits a free involution τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau $$\end{document}. A homotopy class β∈[M,N]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta \in [ M , N ] $$\end{document} is said to have the Borsuk–Ulam property with respect toτ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau $$\end{document} if for every representative map f:M→N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f:\,M \rightarrow N$$\end{document} of β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document}, there exists a point x∈M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x \in M$$\end{document} such that f(τ(x))=f(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f ( \tau ( x) ) = f(x)$$\end{document}. In the case where M is a compact, connected manifold without boundary and N is a compact, connected surface without boundary different from the 2-sphere and the real projective plane, we formulate this property in terms of the pure and full 2-string braid groups of N, and of the fundamental groups of M and the orbit space of M with respect to the action of τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau $$\end{document}. If M=N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M=N$$\end{document} is either the 2-torus T2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {T}^2$$\end{document} or the Klein bottle K2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {K}^2$$\end{document}, we then solve the problem of deciding which homotopy classes of [M, M] have the Borsuk–Ulam property. First, if τ:T2→T2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau :\,\mathbb {T}^2\rightarrow \mathbb {T}^2$$\end{document} is a free involution that preserves orientation, we show that no homotopy class of [T2,T2]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[ \mathbb {T}^2, \mathbb {T}^2]$$\end{document} has the Borsuk–Ulam property with respect to τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau $$\end{document}. Second, we prove that up to a certain equivalence relation, there is only one class of free involutions τ:T2→T2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau :\,\mathbb {T}^2\rightarrow \mathbb {T}^2$$\end{document} that reverse orientation, and for such involutions, we classify the homotopy classes in [T2,T2]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[\mathbb {T}^2, \mathbb {T}^2]$$\end{document} that have the Borsuk–Ulam property with respect to τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau $$\end{document} in terms of the induced homomorphism on the fundamental group. Finally, we show that if τ:K2→K2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau :\,\mathbb {K}^2\rightarrow \mathbb {K}^2$$\end{document} is a free involution, then a homotopy class of [K2,K2]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[\mathbb {K}^2, \mathbb {K}^2]$$\end{document} has the Borsuk–Ulam property with respect to τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau $$\end{document} if and only if the given homotopy class lifts to the torus.
引用
收藏
相关论文
共 46 条
  • [1] The Borsuk-Ulam property for homotopy classes of self-maps of surfaces of Euler characteristic zero
    Goncalves, Daciberg Lima
    Guaschi, John
    Laass, Vinicius Casteluber
    JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2019, 21 (02)
  • [2] THE BORSUK-ULAM PROPERTY FOR HOMOTOPY CLASSES OF MAPS FROM THE TORUS TO THE KLEIN BOTTLE
    Goncalves, Daciberg Lima
    Guaschi, John
    Laass, Vinicius Casteluber
    TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2020, 56 (02) : 529 - 558
  • [3] THE BORSUK-ULAM PROPERTY FOR HOMOTOPY CLASSES OF MAPS FROM THE TORUS TO THE KLEIN BOTTLE PART 2
    Goncalves, Daciberg Lima
    Guaschi, John
    Laass, Vinicius Casteluber
    TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2022, 60 (02) : 491 - 516
  • [4] The Borsuk-Ulam property for homotopy classes on bundles, parametrized braids groups and applications for surfaces bundles
    Goncalves, Daciberg Lima
    Laass, Vinicius Casteluber
    Silva, Weslem Liberato
    TOPOLOGY AND ITS APPLICATIONS, 2025, 359
  • [5] Homotopy classes of self-maps and induced homomorphisms of homotopy groups
    Arkowitz, Martin
    Oshima, Hideaki
    Strom, Jeffrey
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2006, 58 (02) : 401 - 418
  • [6] THE BORSUK-ULAM PROPERTY FOR MAPS FROM THE PRODUCT OF TWO SURFACES INTO A SURFACE
    Goncalves, Daciberg Lima
    dos Santos, Anderson Paiao
    Silva, Weslem Liberato
    TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2021, 58 (02) : 367 - 388
  • [7] Homotopy Classes of Self-Maps of Annuli, Generalised Twists and Spin Degree
    Taheri, Ali
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2010, 197 (01) : 239 - 270
  • [8] Homotopy Classes of Self-Maps of Annuli, Generalised Twists and Spin Degree
    Ali Taheri
    Archive for Rational Mechanics and Analysis, 2010, 197 : 239 - 270
  • [9] The ring of stable homotopy classes of self-maps of An2-polyhedra
    Mendez, David
    TOPOLOGY AND ITS APPLICATIONS, 2021, 290
  • [10] Diagonal Involutions and the Borsuk–Ulam Property for Product of Surfaces
    Daciberg Lima Gonçalves
    Anderson Paião dos Santos
    Bulletin of the Brazilian Mathematical Society, New Series, 2019, 50 : 771 - 786