Two-Sided Properties of Elements in Exchange Rings

被引:0
|
作者
Dinesh Khurana
T. Y. Lam
Pace P. Nielsen
机构
[1] Panjab University,Department of Mathematics
[2] University of California,Department of Mathematics
[3] Brigham Young University,Department of Mathematics
来源
关键词
Two-sided properties; Idempotents; Exchange elements; Suitable elements; Exchange rings; Suitable rings; Endomorphism rings; 16D40; 16D50;
D O I
暂无
中图分类号
学科分类号
摘要
For any element a in an exchange ring R, we show that there is an idempotent e∈aR∩Ra\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\,e\in aR\cap R\,a\,$\end{document} such that 1−e∈(1−a)R∩R(1−a)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\,1-e\in (1-a)\,R\cap R\,(1-a)$\end{document}. A closely related result is that a ring R is an exchange ring if and only if, for every a∈R, there exists an idempotent e∈Ra such that 1−e∈(1−a) R. The Main Theorem of this paper is a general two-sided statement on exchange elements in arbitrary rings which subsumes both of these results. Finally, applications of these results are given to the study of the endomorphism rings of exchange modules.
引用
收藏
页码:931 / 940
页数:9
相关论文
共 50 条
  • [1] Two-Sided Properties of Elements in Exchange Rings
    Khurana, Dinesh
    Lam, T. Y.
    Nielsen, Pace P.
    [J]. ALGEBRAS AND REPRESENTATION THEORY, 2015, 18 (04) : 931 - 940
  • [2] Two-sided E-rings
    Dugas, M
    Vinsonhaler, C
    [J]. JOURNAL OF PURE AND APPLIED ALGEBRA, 2003, 185 (1-3) : 87 - 102
  • [3] A characterization of two-sided centralizers on prime rings
    Vukman, Joso
    Fosner, Maja
    [J]. TAIWANESE JOURNAL OF MATHEMATICS, 2007, 11 (05): : 1431 - 1441
  • [4] Two-sided ideals in group near-rings
    Du, J
    [J]. JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2004, 77 : 321 - 334
  • [5] AN EQUATION RELATED TO TWO-SIDED CENTRALIZERS IN PRIME RINGS
    Fosner, Maja
    Vukman, Joso
    [J]. ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2011, 41 (03) : 765 - 776
  • [6] AN EQUATION RELATED TO TWO-SIDED CENTRALIZERS IN PRIME RINGS
    Fosner, Maja
    Vukman, Joso
    [J]. HOUSTON JOURNAL OF MATHEMATICS, 2009, 35 (02): : 353 - 361
  • [7] Two-Sided Matching via Balanced Exchange
    Dur, Umut Mert
    Unver, M. Utku
    [J]. JOURNAL OF POLITICAL ECONOMY, 2019, 127 (03) : 1156 - 1177
  • [8] The Power of Two-Sided Recruitment in Two-Sided Markets
    Cai, Yang
    Liaw, Christopher
    Mehta, Aranyak
    Zhao, Mingfei
    [J]. PROCEEDINGS OF THE 56TH ANNUAL ACM SYMPOSIUM ON THEORY OF COMPUTING, STOC 2024, 2024, : 201 - 212
  • [9] A new equation related to two-sided centralizers in prime rings
    Maja Fošner
    Benjamin Marcen
    [J]. Aequationes mathematicae, 2022, 96 : 1207 - 1219
  • [10] A new equation related to two-sided centralizers in prime rings
    Fosner, Maja
    Marcen, Benjamin
    [J]. AEQUATIONES MATHEMATICAE, 2022,