A new equation related to two-sided centralizers in prime rings

被引:0
|
作者
Maja Fošner
Benjamin Marcen
机构
[1] University of Maribor,Faculty of Logistics
来源
Aequationes mathematicae | 2022年 / 96卷
关键词
Ring; Prime ring; Semiprime ring; Derivation; Jordan derivation; Jordan triple derivation; Left (right) centralizer; Left (right) Jordan centralizer; Two-sided centralizer; Functional equation; Functional identity; 16N60; 16W25; 39B05;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we prove the following result: Let R be a prime ring with char(R)≠2,3,5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$char(R)\ne 2,3,5$$\end{document} and let T:R→R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T:R\rightarrow R$$\end{document} be an additive mapping satisfying the relation T(x4)=xT(x2)x\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ T(x^{4})=xT(x^2)x$$\end{document} for all x∈R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x\in R$$\end{document}. In this case T is of the form T(x)=λx\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T(x)=\lambda x$$\end{document} for all x∈R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x\in R$$\end{document} and some fixed element λ∈C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda \in C$$\end{document}, where C is the extended centroid of R.
引用
收藏
页码:1207 / 1219
页数:12
相关论文
共 50 条
  • [1] A new equation related to two-sided centralizers in prime rings
    Fosner, Maja
    Marcen, Benjamin
    [J]. AEQUATIONES MATHEMATICAE, 2022,
  • [2] A new equation related to two-sided centralizers in prime rings
    Fosner, Maja
    Marcen, Benjamin
    [J]. AEQUATIONES MATHEMATICAE, 2022, 96 (06) : 1207 - 1219
  • [3] AN EQUATION RELATED TO TWO-SIDED CENTRALIZERS IN PRIME RINGS
    Fosner, Maja
    Vukman, Joso
    [J]. HOUSTON JOURNAL OF MATHEMATICS, 2009, 35 (02): : 353 - 361
  • [4] AN EQUATION RELATED TO TWO-SIDED CENTRALIZERS IN PRIME RINGS
    Fosner, Maja
    Vukman, Joso
    [J]. ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2011, 41 (03) : 765 - 776
  • [5] On a functional equation characterizing two-sided centralizers in prime rings
    Fosner, Maja
    Marcen, Benjamin
    Vukman, Joso
    [J]. PERIODICA MATHEMATICA HUNGARICA, 2023, 86 (02) : 538 - 551
  • [6] On a functional equation characterizing two-sided centralizers in prime rings
    Maja Fošner
    Benjamin Marcen
    Joso Vukman
    [J]. Periodica Mathematica Hungarica, 2023, 86 : 538 - 551
  • [7] A characterization of two-sided centralizers on prime rings
    Vukman, Joso
    Fosner, Maja
    [J]. TAIWANESE JOURNAL OF MATHEMATICS, 2007, 11 (05): : 1431 - 1441
  • [8] On certain functional equation related to two-sided centralizers
    Fosner, Maja
    Persin, Nina
    [J]. AEQUATIONES MATHEMATICAE, 2013, 85 (03) : 329 - 346
  • [9] On certain functional equation related to two-sided centralizers
    Maja Fošner
    Nina Peršin
    [J]. Aequationes mathematicae, 2013, 85 : 329 - 346
  • [10] Characterization of Jordan two-sided centralizers and related maps on triangular rings
    Hosseini, Amin
    Ali, Shakir
    Karizaki, Mehdi Mohammadzadeh
    [J]. GEORGIAN MATHEMATICAL JOURNAL, 2023, 30 (05) : 727 - 737