Poincaré problem for weighted projective foliations

被引:0
|
作者
F. E. Brochero Martínez
M. Corrêa
A. M. Rodríguez
机构
[1] Universidade Federal de Minas Gerais,Departamento de Matemática
关键词
Holomorphic foliations; Poincaré problem; Weighted projective space; Baum–Bott Theorem; Primary 32S65; Secondary 37F75;
D O I
暂无
中图分类号
学科分类号
摘要
We give an upper bound of the degree of quasi-smooth hypersurfaces which are invariant by a one dimensional holomorphic foliation on a weighted projective space. This bound depends only on the degree of the foliation and the weights of the space.
引用
收藏
页码:219 / 235
页数:16
相关论文
共 50 条
  • [41] Isotrivial Unfoldings and Structural Theorems for Foliations on Projective Spaces
    Quallbrunn, Federico
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2017, 48 (03): : 335 - 345
  • [42] Codimension 1 Mukai foliations on complex projective manifolds
    Araujo, Carolina
    Druel, Stephane
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2017, 727 : 191 - 246
  • [43] Assigned base conditions and geometry of foliations on the projective plane
    Campillo, A
    Olivares, J
    SINGULARITIES - SAPPORO 1998, 2000, 29 : 97 - 113
  • [44] Stability Of Branched Pull-Back Projective Foliations
    Costa e Silva, W.
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2017, 48 (01): : 29 - 44
  • [45] Levi-Flat Hypersurfaces Tangent to Projective Foliations
    Arturo Fernández-Pérez
    The Journal of Geometric Analysis, 2014, 24 : 1959 - 1970
  • [46] Flat webs and homogeneous foliations on the complex projective plane
    Bedrouni, Samir
    Marin, David
    BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 2018, 146 (03): : 479 - 516
  • [47] Characterization of generic projective space bundles and algebraicity of foliations
    Araujo, Carolina
    Druel, Stephane
    COMMENTARII MATHEMATICI HELVETICI, 2019, 94 (04) : 833 - 853
  • [48] Isotrivial Unfoldings and Structural Theorems for Foliations on Projective Spaces
    Federico Quallbrunn
    Bulletin of the Brazilian Mathematical Society, New Series, 2017, 48 : 335 - 345
  • [49] Totally real harmonic foliations on a complex projective space
    Gongcheng Shuxue Xuebao, 4 (19-24):
  • [50] FOLIATIONS ON THE COMPLEX PROJECTIVE PLANE WITH MANY PARABOLIC LEAVES
    BRUNELLA, M
    ANNALES DE L INSTITUT FOURIER, 1994, 44 (04) : 1237 - 1242