From torus bundles to particle–hole equivariantization

被引:0
|
作者
Shawn X. Cui
Paul Gustafson
Yang Qiu
Qing Zhang
机构
[1] Purdue University,Department of Mathematics
[2] Purdue University,Department of Physics and Astronomy
[3] University of Pennsylvania,Department of Electrical and Systems Engineering
[4] University of California,Department of Mathematics
[5] Purdue University,Department of Mathematics
来源
关键词
Chern–Simons invariants; Equivariantization; Premodular category; Reidemeister torsions; SOL geometry; 18M20; 57K16; 58J28;
D O I
暂无
中图分类号
学科分类号
摘要
We continue the program of constructing (pre)modular tensor categories from 3-manifolds first initiated by Cho–Gang–Kim using M theory in physics and then mathematically studied by Cui–Qiu–Wang. An important structure involved in the construction is a collection of certain SL(2,C)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text {SL}(2, \mathbb {C})$$\end{document} characters on a given manifold, which serve as the simple object types in the corresponding category. Chern–Simons invariants and adjoint Reidemeister torsions also play a key role, and they are related to topological twists and quantum dimensions, respectively, of simple objects. The modular S-matrix is computed from local operators and follows a trial-and-error procedure. It is currently unknown how to produce data beyond the modular S- and T-matrices. There are also a number of subtleties in the construction, which remain to be solved. In this paper, we consider an infinite family of 3-manifolds, that is, torus bundles over the circle. We show that the modular data produced by such manifolds are realized by the Z2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Z}_2$$\end{document}-equivariantization of certain pointed premodular categories. Here the equivariantization is performed for the Z2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Z}_2$$\end{document}-action sending a simple (invertible) object to its inverse, also called the particle–hole symmetry. It is our hope that this extensive class of examples will shed light on how to improve the program to recover the full data of a premodular category.
引用
收藏
相关论文
共 50 条
  • [41] Torus bundles, automorphisms and T-duality
    H. Mahmood
    R. A. Reid-Edwards
    Journal of High Energy Physics, 2021
  • [42] Perverse l-adic bundles on a torus
    Gabber, O
    Loeser, F
    DUKE MATHEMATICAL JOURNAL, 1996, 83 (03) : 501 - 606
  • [43] On symplectic fillings of virtually overtwisted torus bundles
    Christian, Austin
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2021, 21 (01): : 469 - 505
  • [44] T-duality for principal torus bundles
    Bouwknegt, P
    Hannabuss, K
    Mathai, V
    JOURNAL OF HIGH ENERGY PHYSICS, 2004, (03):
  • [45] Haldane Bundles: A Dataset for Learning to Predict the Chern Number of Line Bundles on the Torus
    Tipton, Cody
    Coda, Elizabeth
    Brown, Davis
    Bittner, Alyson
    Lee, Jung
    Jorgenson, Grayson
    Emerson, Tegan
    Kvinge, Henry
    NEURIPS WORKSHOP ON SYMMETRY AND GEOMETRY IN NEURAL REPRESENTATIONS, 2023, 228 : 55 - 74
  • [46] Elliptic open books on torus bundles over the circle
    Etgue, Tolga
    GEOMETRIAE DEDICATA, 2008, 132 (01) : 53 - 63
  • [47] Fillable contact structures on torus bundles over circles
    Mikrut, P
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 130 (02) : 599 - 607
  • [48] INCOMPRESSIBLE SURFACES IN ONCE-PUNCTURED TORUS BUNDLES
    CULLER, M
    JACO, W
    RUBINSTEIN, H
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 1982, 45 (NOV) : 385 - 419
  • [49] Proposed gravitational wave background from black hole - Torus systems
    Coward, DM
    van Putten, MHPM
    Burman, RR
    ASTROPHYSICAL JOURNAL, 2002, 580 (02): : 1024 - 1029
  • [50] A Fourier-Mukai transform for real torus bundles
    Glazebrook, JF
    Jardim, M
    Kamber, FW
    JOURNAL OF GEOMETRY AND PHYSICS, 2004, 50 (1-4) : 360 - 392