From torus bundles to particle–hole equivariantization

被引:0
|
作者
Shawn X. Cui
Paul Gustafson
Yang Qiu
Qing Zhang
机构
[1] Purdue University,Department of Mathematics
[2] Purdue University,Department of Physics and Astronomy
[3] University of Pennsylvania,Department of Electrical and Systems Engineering
[4] University of California,Department of Mathematics
[5] Purdue University,Department of Mathematics
来源
关键词
Chern–Simons invariants; Equivariantization; Premodular category; Reidemeister torsions; SOL geometry; 18M20; 57K16; 58J28;
D O I
暂无
中图分类号
学科分类号
摘要
We continue the program of constructing (pre)modular tensor categories from 3-manifolds first initiated by Cho–Gang–Kim using M theory in physics and then mathematically studied by Cui–Qiu–Wang. An important structure involved in the construction is a collection of certain SL(2,C)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text {SL}(2, \mathbb {C})$$\end{document} characters on a given manifold, which serve as the simple object types in the corresponding category. Chern–Simons invariants and adjoint Reidemeister torsions also play a key role, and they are related to topological twists and quantum dimensions, respectively, of simple objects. The modular S-matrix is computed from local operators and follows a trial-and-error procedure. It is currently unknown how to produce data beyond the modular S- and T-matrices. There are also a number of subtleties in the construction, which remain to be solved. In this paper, we consider an infinite family of 3-manifolds, that is, torus bundles over the circle. We show that the modular data produced by such manifolds are realized by the Z2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Z}_2$$\end{document}-equivariantization of certain pointed premodular categories. Here the equivariantization is performed for the Z2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Z}_2$$\end{document}-action sending a simple (invertible) object to its inverse, also called the particle–hole symmetry. It is our hope that this extensive class of examples will shed light on how to improve the program to recover the full data of a premodular category.
引用
收藏
相关论文
共 50 条
  • [1] From torus bundles to particle-hole equivariantization
    Cui, Shawn X.
    Gustafson, Paul
    Qiu, Yang
    Zhang, Qing
    LETTERS IN MATHEMATICAL PHYSICS, 2022, 112 (01)
  • [2] ALGEBRAIC VECTOR BUNDLES OVER I-HOLE TORUS
    CAVANAUGH, JM
    ILLINOIS JOURNAL OF MATHEMATICS, 1975, 19 (03) : 336 - 343
  • [3] SELF-MAPPING DEGREES OF TORUS BUNDLES AND TORUS SEMI-BUNDLES
    Sun, Hongbin
    Wang, Shicheng
    Wu, Jianchun
    OSAKA JOURNAL OF MATHEMATICS, 2010, 47 (01) : 131 - 155
  • [4] Genera of coverings of torus bundles
    Nunez, Victor
    Ramirez-Losada, Enrique
    Remigio-Juarez, Jair
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2018, 112 (03) : 811 - 827
  • [5] On the spectrum of collapsing torus bundles
    Jammes, P
    MANUSCRIPTA MATHEMATICA, 2003, 110 (01) : 13 - 31
  • [6] COHOMOLOGY OF TORUS MANIFOLD BUNDLES
    Dasgupta, Jyoti
    Khan, Bivas
    Uma, Vikraman
    MATHEMATICA SLOVACA, 2019, 69 (03) : 685 - 698
  • [7] Real places and torus bundles
    Calegari, Danny
    GEOMETRIAE DEDICATA, 2006, 118 (01) : 209 - 227
  • [8] Genera of coverings of torus bundles
    Víctor Núñez
    Enrique Ramírez-Losada
    Jair Remigio-Juárez
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2018, 112 : 811 - 827
  • [9] REMARKS ON TORUS PRINCIPAL BUNDLES
    HOFER, T
    JOURNAL OF MATHEMATICS OF KYOTO UNIVERSITY, 1993, 33 (01): : 227 - 259
  • [10] Real Places and Torus Bundles
    Danny Calegari
    Geometriae Dedicata, 2006, 118 : 209 - 227