On the two-dimensional Boussinesq equations with temperature-dependent thermal and viscosity diffusions in general Sobolev spaces

被引:1
|
作者
He, Zihui [1 ]
Liao, Xian [1 ]
机构
[1] Karlsruhe Inst Technol, Inst Anal, Englorstr 2, D-76131 Karlsruhe, Germany
来源
关键词
Boussinesq equations; Temperature-dependent diffusion coefficients; Existence; Uniqueness; Regularity; Sobolev spaces; GLOBAL WELL-POSEDNESS; SYSTEM; REGULARITY; EXISTENCE;
D O I
10.1007/s00033-021-01650-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the existence, uniqueness as well as regularity issues for the two-dimensional incompressible Boussinesq equations with temperature-dependent thermal and viscosity diffusion coefficients in general Sobolev spaces. The optimal regularity exponent ranges are considered.
引用
收藏
页数:25
相关论文
共 50 条
  • [21] A NEW MIXED FINITE ELEMENT METHOD FOR THE n-DIMENSIONAL BOUSSINESQ PROBLEM WITH TEMPERATURE-DEPENDENT VISCOSITY
    Almonacid, Javier A.
    Gatica, Gabriel N.
    Oyarzua, Ricardo
    Ruiz-Baier, Ricardo
    NETWORKS AND HETEROGENEOUS MEDIA, 2020, 15 (02) : 215 - 245
  • [22] Global well-posedness of three-dimensional incompressible Boussinesq system with temperature-dependent viscosity
    Niu, Dongjuan
    Wang, Lu
    JOURNAL OF MATHEMATICAL PHYSICS, 2024, 65 (04)
  • [23] Temperature-dependent Drude transport in a two-dimensional electron gas
    Novikov, D. S.
    PHYSICAL REVIEW B, 2009, 79 (23):
  • [24] Two-dimensional hyperbolic heat conduction with temperature-dependent properties
    Shen, W
    Han, S
    JOURNAL OF THERMOPHYSICS AND HEAT TRANSFER, 2004, 18 (02) : 285 - 287
  • [25] Temperature-dependent layer breathing modes in two-dimensional materials
    Maity, Indrajit
    Maiti, Prabal K.
    Jain, Manish
    PHYSICAL REVIEW B, 2018, 97 (16)
  • [26] Investigation of Entropy in Two-Dimensional Peristaltic Flow with Temperature Dependent Viscosity, Thermal and Electrical Conductivity
    Qasim, Muhammad
    Ali, Zafar
    Farooq, Umer
    Lu, Dianchen
    ENTROPY, 2020, 22 (02)
  • [27] Numerical Simulation of Heat Distribution with Temperature-Dependent Thermal Conductivity in a Two-Dimensional Liquid Flow
    Nsoga, Valjacques Nyemb
    Hona, Jacques
    Pemha, Elkana
    INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2017, 18 (06) : 507 - 513
  • [28] Two-dimensional parabolic modeling of extended Boussinesq equations
    Kaihatu, JM
    Kirby, JT
    JOURNAL OF WATERWAY PORT COASTAL AND OCEAN ENGINEERING-ASCE, 1998, 124 (02): : 57 - 67
  • [29] Hierarchical Equations of Motion Simulation of Temperature-Dependent Two-Dimensional Electronic Spectroscopy of the Chlorophyll a Manifold in LHCII
    Leng, Xuan
    Do, Thanh Nhut
    Akhtar, Parveen
    Nguyen, Hoang Long
    Lambrev, Petar H.
    Tan, Howe-Siang
    CHEMISTRY-AN ASIAN JOURNAL, 2020, 15 (13) : 1996 - 2004
  • [30] A mixed–primal finite element method for the Boussinesq problem with temperature-dependent viscosity
    Javier A. Almonacid
    Gabriel N. Gatica
    Ricardo Oyarzúa
    Calcolo, 2018, 55