On Mean Field Limits for Dynamical Systems

被引:0
|
作者
Niklas Boers
Peter Pickl
机构
[1] LMU Munich,
来源
关键词
Vlasov equation; Classical mean-field; Statisitcal mechanics; Propagation of chaos;
D O I
暂无
中图分类号
学科分类号
摘要
We present a purely probabilistic proof of propagation of molecular chaos for N-particle systems in dimension 3 with interaction forces scaling like 1/|q|3λ-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1/\vert q\vert ^{3\lambda - 1}$$\end{document} with λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document} smaller but close to one and cut-off at q=N-1/3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q = N^{-1/3}$$\end{document}. The proof yields a Gronwall estimate for the maximal distance between exact microscopic and approximate mean-field dynamics. This can be used to show weak convergence of the one-particle marginals to solutions of the respective mean-field equation without cut-off in a quantitative way. Our results thus lead to a derivation of the Vlasov equation from the microscopic N-particle dynamics with force term arbitrarily close to the physically relevant Coulomb- and gravitational forces.
引用
收藏
页码:1 / 16
页数:15
相关论文
共 50 条
  • [21] Pathwise regularisation of singular interacting particle systems and their mean field limits
    Harang, Fabian A.
    Mayorcas, Avi
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2023, 159 : 499 - 540
  • [22] Combined Mean-Field and Semiclassical Limits of Large Fermionic Systems
    Li Chen
    Jinyeop Lee
    Matthew Liew
    Journal of Statistical Physics, 2021, 182
  • [23] Dynamical mean field theory for manganites
    Yang, Y. -F.
    Held, K.
    PHYSICAL REVIEW B, 2010, 82 (19)
  • [24] DYNAMICAL FRICTION IN A MEAN FIELD APPROXIMATION
    KANDRUP, HE
    ASTROPHYSICS AND SPACE SCIENCE, 1983, 97 (02) : 435 - 452
  • [25] Generalized dynamical mean-field theory in the physics of strongly correlated systems
    Kuchinskii, E. Z.
    Nekrasov, I. A.
    Sadovskii, M. V.
    PHYSICS-USPEKHI, 2012, 55 (04) : 325 - 355
  • [26] Dynamical mean field theory study of the linear and nonlinear optics of Kondo systems
    Jafari, S. Akbar
    Tohyama, Takami
    Maekawa, Sadamichi
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2007, 76 (04)
  • [27] Coherent quasiparticle evolution in charge transfer systems: A dynamical mean field theory
    Lombardo, P
    Schmalian, J
    Avignon, M
    Bennemann, KH
    PHYSICA B, 1997, 230 : 415 - 417
  • [28] Dynamical mean-field approximation and cluster methods for correlated electron systems
    Pruschke, Thomas
    COMPUTATIONAL MANY-PARTICLE PHYSICS, 2008, 739 : 473 - 503
  • [29] Dynamical Mean-Field Theory of Complex Systems on Sparse Directed Networks
    Metz, Fernando L.
    PHYSICAL REVIEW LETTERS, 2025, 134 (03)
  • [30] QUANTUM SPIN SYSTEMS - DYNAMICAL MEAN FIELD RENORMALIZATION-GROUP APPROACH
    PLASCAK, JA
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1984, 17 (13): : L697 - L702