On Mean Field Limits for Dynamical Systems

被引:0
|
作者
Niklas Boers
Peter Pickl
机构
[1] LMU Munich,
来源
关键词
Vlasov equation; Classical mean-field; Statisitcal mechanics; Propagation of chaos;
D O I
暂无
中图分类号
学科分类号
摘要
We present a purely probabilistic proof of propagation of molecular chaos for N-particle systems in dimension 3 with interaction forces scaling like 1/|q|3λ-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1/\vert q\vert ^{3\lambda - 1}$$\end{document} with λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document} smaller but close to one and cut-off at q=N-1/3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q = N^{-1/3}$$\end{document}. The proof yields a Gronwall estimate for the maximal distance between exact microscopic and approximate mean-field dynamics. This can be used to show weak convergence of the one-particle marginals to solutions of the respective mean-field equation without cut-off in a quantitative way. Our results thus lead to a derivation of the Vlasov equation from the microscopic N-particle dynamics with force term arbitrarily close to the physically relevant Coulomb- and gravitational forces.
引用
收藏
页码:1 / 16
页数:15
相关论文
共 50 条
  • [1] On Mean Field Limits for Dynamical Systems
    Boers, Niklas
    Pickl, Peter
    JOURNAL OF STATISTICAL PHYSICS, 2016, 164 (01) : 1 - 16
  • [2] Mean-Field Limits for Entropic Multi-Population Dynamical Systems
    Almi, Stefano
    D'Eramo, Claudio
    Morandotti, Marco
    Solombrino, Francesco
    MILAN JOURNAL OF MATHEMATICS, 2023, 91 (01) : 175 - 212
  • [3] Mean-Field Limits for Entropic Multi-Population Dynamical Systems
    Stefano Almi
    Claudio D’Eramo
    Marco Morandotti
    Francesco Solombrino
    Milan Journal of Mathematics, 2023, 91 : 175 - 212
  • [4] Mean-Field Limits for Discrete-Time Dynamical Systems via Kernel Mean Embeddings
    Fiedler, Christian
    Herty, Michael
    Trimpe, Sebastian
    IEEE CONTROL SYSTEMS LETTERS, 2023, 7 : 3914 - 3919
  • [5] Mean-field limits of trained weights in deep learning: A dynamical systems perspective
    Smirnov, Alexandre
    Hamzi, Boumediene
    Owhadi, Houman
    DOLOMITES RESEARCH NOTES ON APPROXIMATION, 2022, 15 : 125 - 145
  • [6] Mean field limit of a dynamical model of polymer systems
    E Weinan
    SHEN Hao
    ScienceChina(Mathematics), 2013, 56 (12) : 2591 - 2598
  • [7] Dynamical TAP approach to mean field glassy systems
    Biroli, G
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1999, 32 (48): : 8365 - 8388
  • [8] Mean field limit of a dynamical model of polymer systems
    E, Weinan
    Shen Hao
    SCIENCE CHINA-MATHEMATICS, 2013, 56 (12) : 2591 - 2598
  • [9] Mean field limit of a dynamical model of polymer systems
    Weinan E
    Hao Shen
    Science China Mathematics, 2013, 56 : 2591 - 2598
  • [10] A Simple Derivation of Mean Field Limits for Quantum Systems
    Peter Pickl
    Letters in Mathematical Physics, 2011, 97 : 151 - 164