Investigation of mechanical behavior of multi-cellular tubes with intermediate walls under lateral quasi-static loading

被引:0
|
作者
Wannan Guo
机构
[1] Liaoning Technical University,School of Mechanics and Engineering
关键词
Energy absorber; Multicellular structures; Specific energy; Crushing force efficiency; SEA;
D O I
暂无
中图分类号
学科分类号
摘要
Energy absorbers are one of the most important structures in the automotive, shipping and aerospace industries. These structures are made in two types: reversible and irreversible. In this study, thin-walled irreversible energy absorbers were investigated. These absorbers are a new type of multi-cellular structure consisting of several concentric cylinders and two perpendicular walls, and their mechanical behavior and collapse properties have been studied under quasi-static lateral loading. The present study has been done by experiments and simulations. For simulations, LS-DYNA was used and three different groups of absorbers were simulated, including mono-cylindrical, bi-cylindrical (C2) and tri-cylindrical. According to the results obtained from the force–displacement curves, it was found that increasing the thickness in each of the components, including the walls and cylindrical shells, leads to increasing the mechanical properties such as specific energy absorption, maximum force and crushing force efficiency. Also, a comprehensive analysis was performed on the force–displacement curves of these structures. It was observed that for each group of absorbers, the collapse of each wall causes peak force s in the force curve. It was also observed that in Group C2 absorbers, the collapse of the cylinders had a more uniform force curve compared to the collapse of the walls, and the greater the thickness of the cylinders and the smaller the thickness of the walls, the smaller the difference between the uniform part and the peak force.
引用
收藏
相关论文
共 50 条
  • [41] Mechanical Properties of Polyurea Material under Quasi-static and Dynamic Loading
    Jia Z.
    Wang S.
    Chen Y.
    Wang Z.
    Cui H.
    Zhang P.
    Xu Y.
    Binggong Xuebao/Acta Armamentarii, 2021, 42 : 151 - 158
  • [42] Energy absorption investigation of octagonal multi-layered origami thin-walled tubes under quasi-static axial loading
    Aghamirzaie, Mojtaba
    Najibi, Amir
    Ghasemi-Ghalebahman, Ahmad
    INTERNATIONAL JOURNAL OF CRASHWORTHINESS, 2023, 28 (04) : 511 - 522
  • [43] ALUMINIUM HONEYCOMB UNDER QUASI-STATIC COMPRESSIVE LOADING: AN EXPERIMENTAL INVESTIGATION
    Said, Mohamad Radzai
    Tan, Chee-Fai
    SURANAREE JOURNAL OF SCIENCE AND TECHNOLOGY, 2009, 16 (01): : 1 - 8
  • [44] ALUMINIUM HONEYCOMB UNDER QUASI-STATIC COMPRESSIVE LOADING: AN EXPERIMENTAL INVESTIGATION
    Said, Mohamad Radzai
    Tan, Chee-Fai
    SURANAREE JOURNAL OF SCIENCE AND TECHNOLOGY, 2008, 15 (01): : 1 - 8
  • [45] Behavior of composite shells under transverse impact and quasi-static loading
    Wardle, BL
    Lagace, PA
    AIAA JOURNAL, 1998, 36 (06) : 1065 - 1073
  • [46] Energy absorption and failure behavior of Al/CFRP/GFRP hybrid tubes under quasi-static axial loading
    Mat, Fauziah
    Jamir, Mohd Ridzuan Mohd
    Ahmad, Masniezam
    Majid, Mohd Shukry Abdul
    Ismail, Khairul Azwan
    JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY, 2023, 37 (07) : 3261 - 3271
  • [47] Energy absorption and failure behavior of Al/CFRP/GFRP hybrid tubes under quasi-static axial loading
    Fauziah Mat
    Mohd Ridzuan Mohd Jamir
    Masniezam Ahmad
    Mohd Shukry Abdul Majid
    Khairul Azwan Ismail
    Journal of Mechanical Science and Technology, 2023, 37 : 3261 - 3271
  • [48] Behavior of timber-composite diaphragms under quasi-static loading
    Judd, JP
    Fonseca, FS
    2001 SECOND INTERNATIONAL CONFERENCE ON ENGINEERING MATERIALS, VOL I, 2001, : 391 - 401
  • [49] Parametric study on quasi-static crushing behaviour of flanged tubes under axial loading
    Singh, A.
    Panda, S. K.
    MATERIALS TODAY-PROCEEDINGS, 2017, 4 (02) : 863 - 871
  • [50] Bitubular square tubes with different arrangements under quasi-static axial compression loading
    Kashani, Masoud Haghi
    Alavijeh, Hamid Shahsavari
    Akbarshahi, Hossein
    Shakeri, Mahmoud
    MATERIALS & DESIGN, 2013, 51 : 1095 - 1103