Numerical MHD Simulations of Reconnection in Solar Flares: Effects of the Magnetic-Field Strength in the Current Sheet

被引:0
|
作者
I. Izquierdo-Guzmán
J. J. González-Avilés
F. S. Guzmán
机构
[1] Universidad Michoacana de San Nicolás de Hidalgo,Instituto de Física y Matemáticas
[2] Universidad Nacional Autónoma de México,Investigadores por México
[3] Universidad Nacional Autónoma de México,CONAHCYT, Servicio de Clima Espacial México, Laboratorio Nacional de Clima Espacial, Instituto de Geofísica, Unidad Michoacán
来源
Solar Physics | 2023年 / 298卷
关键词
Flares, dynamics; Flares, models; Magnetic fields, corona; Magnetic reconnection, theory; Magnetohydrodynamics;
D O I
暂无
中图分类号
学科分类号
摘要
We simulate the evolution of reconnection in solar flares to study the influence of magnetic-field strength and thermal conduction on the dynamics of the magnetic-reconnection and energy-conversion processes. For this, we solve the 2.5D resistive magnetohydrodynamics (MHD) equations with thermal conduction on a domain that contains the chromosphere–corona interface. The flare is triggered at a null point where a Gaussian resistivity distribution is maximum, and further evolution is tracked. The parameter space considers magnetic-field strength [B0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$B_{0}$\end{document}] between 22 G and 50 G, and thermal conductivity [κ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\kappa $\end{document}] in the range from zero to 10−11\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$10^{-11}$\end{document} W m−1K−7/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$^{-7/2}$\end{document}. In this parameter space, we find that the magnetic field determines the reconnection rate, which can change by a 100% in the range of B0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$B_{0}$\end{document}, whereas thermal conduction can induce a rate change of at most 10%. We also measure the evolution of magnetic, internal, and kinetic energies in a region just above the reconnection point and measure their interplay. For all simulations, magnetic energy dominates initially and relaxes on a time scale of about 20 seconds. In this interval, the magnetic energy drops by ≈50%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\approx 50\%$\end{document}, whereas the internal energy grows by ≈100%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\approx 100\%$\end{document}. During the process, part of the energy becomes kinetic, which pushes the reconnection jet upwards and is bigger for the bigger B0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$B_{0}$\end{document} and smaller κ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\kappa $\end{document}.
引用
收藏
相关论文
共 50 条
  • [21] MAGNETIC-FIELD RECONNECTION ENHANCED BY INTERCHANGE INSTABILITY IN PLASMA SHEET
    KAN, JR
    CHAO, JK
    TRANSACTIONS-AMERICAN GEOPHYSICAL UNION, 1976, 57 (12): : 994 - 994
  • [22] Numerical MHD Simulations of Solar Magnetoconvection and Oscillations in Inclined Magnetic Field Regions
    Kitiashvili, I. N.
    Kosovichev, A. G.
    Mansour, N. N.
    Wray, A. A.
    SOLAR PHYSICS, 2011, 268 (02) : 283 - 291
  • [23] Numerical MHD Simulations of Solar Magnetoconvection and Oscillations in Inclined Magnetic Field Regions
    I. N. Kitiashvili
    A. G. Kosovichev
    N. N. Mansour
    A. A. Wray
    Solar Physics, 2011, 268 : 283 - 291
  • [24] Imaging coronal magnetic-field reconnection in a solar flare
    Su, Yang
    Veronig, Astrid M.
    Holman, Gordon D.
    Dennis, Brian R.
    Wang, Tongjiang
    Temmer, Manuela
    Gan, Weiqun
    NATURE PHYSICS, 2013, 9 (08) : 489 - 493
  • [25] MAGNETIC-FIELD RECONNECTION PATTERNS AT THE DAYSIDE MAGNETOPAUSE - AN MHD SIMULATION STUDY
    SHI, Y
    WU, CC
    LEE, LC
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 1991, 96 (A10) : 17627 - 17650
  • [26] MAGNETIC RECONNECTION IN CURRENT SHEETS - SOLAR-FLARES AND LABORATORY EXPERIMENTS
    BULANOV, SV
    DOGEL, VA
    FRANK, AG
    SOVIET ASTRONOMY LETTERS, 1984, 10 (01): : 59 - 61
  • [27] RESISTIVE MAGNETIC-FIELD ANNIHILATION AND SOLAR-FLARES
    CROSS, MA
    VANHOVEN, G
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1972, 17 (01): : 122 - &
  • [28] THE EFFECTS OF MAGNETIC-FIELD GEOMETRY ON THE CONFINEMENT OF ENERGETIC ELECTRONS IN SOLAR-FLARES
    MCCLEMENTS, KG
    ASTRONOMY & ASTROPHYSICS, 1992, 253 (01) : 261 - 268
  • [29] Observations of Turbulent Magnetic Reconnection within a Solar Current Sheet
    Cheng, X.
    Li, Y.
    Wan, L. F.
    Ding, M. D.
    Chen, P. F.
    Zhang, J.
    Liu, J. J.
    ASTROPHYSICAL JOURNAL, 2018, 866 (01):
  • [30] Numerical MHD simulations of solar flares and their associated small-scale structures
    Gonzalez-Servin, Mauricio
    Gonzalez-Aviles, J. J.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2024, 528 (03) : 5098 - 5113