An optimization framework for routing protocols in VANETs: a multi-objective firefly algorithm approach

被引:0
|
作者
Christy Jackson Joshua
Vijayakumar Varadarajan
机构
[1] VIT Chennai,School of Computing Science and Engineering
来源
Wireless Networks | 2021年 / 27卷
关键词
VANET; Routing; Multi-objective optimization; Pareto front; MOPSO; Firefly algorithm;
D O I
暂无
中图分类号
学科分类号
摘要
With Automobiles becoming the main form of transportation adopted in all parts of the world, it has become a necessity to develop useful applications providing safety and entertainment by harnessing the communication between the vehicles. Vehicular adhoc networks (VANET) forms the backbone for efficiently communicating among the vehicles. VANETs on the downside do not have a stable topology and has frequent network disconnections due to its high mobility. Taking all these factors into consideration, designing and implementing VANET routing protocols is a challenge. The proposed framework depends on the use of network resources to further reflect the current system condition and adjust the arrangement between continuous network topology changes and the QoS needs. It consists of three stages: The VANET scenario generator for creating network road and traffic scenarios, formulating the weighted cost function, and finally the optimization phase to identify the optimized configuration based on the weighted cost function formulated. The proposed approach (FA-OLSR) was simulated and the simulation results revealed and improved Packet Delivery Ratio, Mean Routing Load, and End-to-End Delay.
引用
收藏
页码:5567 / 5576
页数:9
相关论文
共 50 条
  • [41] Credit portfolio optimization: A multi-objective genetic algorithm approach
    Wang, Zhi
    Zhang, Xuan
    Zhang, ZheKai
    Sheng, Dachen
    BORSA ISTANBUL REVIEW, 2022, 22 (01) : 69 - 76
  • [42] Multi-objective boxing match algorithm for multi-objective optimization problems
    Tavakkoli-Moghaddam, Reza
    Akbari, Amir Hosein
    Tanhaeean, Mehrab
    Moghdani, Reza
    Gholian-Jouybari, Fatemeh
    Hajiaghaei-Keshteli, Mostafa
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 239
  • [43] Hyper multi-objective evolutionary algorithm for multi-objective optimization problems
    Guo, Weian
    Chen, Ming
    Wang, Lei
    Wu, Qidi
    SOFT COMPUTING, 2017, 21 (20) : 5883 - 5891
  • [44] Multi-Objective Optimization Of Hard Turning: A Genetic Algorithm Approach
    Manav, Omkar
    Chinchanikar, Satish
    MATERIALS TODAY-PROCEEDINGS, 2018, 5 (05) : 12240 - 12248
  • [45] MOCSA: A Multi-Objective Crow Search Algorithm for Multi-Objective Optimization
    Nobahari, Hadi
    Bighashdel, Ariyan
    2017 2ND CONFERENCE ON SWARM INTELLIGENCE AND EVOLUTIONARY COMPUTATION (CSIEC), 2017, : 60 - 65
  • [46] Multi-Objective A* Algorithm for the Multimodal Multi-Objective Path Planning Optimization
    Jin, Bo
    2021 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC 2021), 2021, : 1704 - 1711
  • [47] Modified Multi-Objective Particle Swarm Optimization Algorithm for Multi-objective Optimization Problems
    Qiao, Ying
    ADVANCES IN SWARM INTELLIGENCE, ICSI 2012, PT I, 2012, 7331 : 520 - 527
  • [48] Hybrid Multi-Objective Genetic Algorithm for Multi-Objective Optimization Problems
    Zhang, Song
    Wang, Hongfeng
    Yang, Di
    Huang, Min
    2015 27TH CHINESE CONTROL AND DECISION CONFERENCE (CCDC), 2015, : 1970 - 1974
  • [49] Hyper multi-objective evolutionary algorithm for multi-objective optimization problems
    Weian Guo
    Ming Chen
    Lei Wang
    Qidi Wu
    Soft Computing, 2017, 21 : 5883 - 5891
  • [50] Hybrid multi-objective particle swarm optimization feature selection approach with firefly algorithm using decision tree classifier
    Ashish Kumar Singh
    Anoj Kumar
    Evolutionary Intelligence, 2025, 18 (2)