We study p-adic L-functions Lp(s,χ)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$L_p(s,\chi )$$\end{document} for Dirichlet characters χ\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\chi $$\end{document}. We show that Lp(s,χ)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$L_p(s,\chi )$$\end{document} has a Dirichlet series expansion for each regularization parameter c that is prime to p and the conductor of χ\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\chi $$\end{document}. The expansion is proved by transforming a known formula for p-adic L-functions and by controlling the limiting behavior. A finite number of Euler factors can be factored off in a natural manner from the p-adic Dirichlet series. We also provide an alternative proof of the expansion using p-adic measures and give an explicit formula for the values of the regularized Bernoulli distribution. The result is particularly simple for c=2\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$c=2$$\end{document}, where we obtain a Dirichlet series expansion that is similar to the complex case.
机构:
Seoul Natl Univ, Dept Math Sci, Seoul, South Korea
Seoul Natl Univ, Res Inst Math, Seoul, South KoreaGoethe Univ Frankfurt, Inst Math, Frankfurt, Germany
Kim, Dohyeong
Kim, Minhyong
论文数: 0引用数: 0
h-index: 0
机构:
Int Ctr Math Sci, 47 Potterrow, Edinburgh EH8 9BT, Scotland
Korea Inst Adv Study, Seoul, South KoreaGoethe Univ Frankfurt, Inst Math, Frankfurt, Germany
Kim, Minhyong
Park, Jeehoon
论文数: 0引用数: 0
h-index: 0
机构:
Seoul Natl Univ, Ctr Quantum Struct Modules & Spaces, Seoul, South KoreaGoethe Univ Frankfurt, Inst Math, Frankfurt, Germany
Park, Jeehoon
Yoo, Hwajong
论文数: 0引用数: 0
h-index: 0
机构:
Seoul Natl Univ, Res Inst Math, Seoul, South Korea
Seoul Natl Univ, Coll Liberal Studies, Seoul, South KoreaGoethe Univ Frankfurt, Inst Math, Frankfurt, Germany
机构:
Fujian Normal Univ, Coll Math & Informat, Fuzhou 350108, Peoples R China
Fujian Normal Univ, FJKLMAA, Fuzhou 350108, Peoples R ChinaFujian Normal Univ, Coll Math & Informat, Fuzhou 350108, Peoples R China