Dirichlet series expansions of p-adic L-functions

被引:0
|
作者
Heiko Knospe
Lawrence C. Washington
机构
[1] TH Köln - University of Applied Sciences,Faculty 07
[2] University of Maryland,Mathematics Department
关键词
p-adic L-Functions; Dirichlet Characters; Dirichlet Series; Euler Factors; Regularized Bernoulli Distributions; p-adic Measures; Primary: 11R23; Secondary: 11R42; 11S80; 11M41;
D O I
暂无
中图分类号
学科分类号
摘要
We study p-adic L-functions Lp(s,χ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_p(s,\chi )$$\end{document} for Dirichlet characters χ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi $$\end{document}. We show that Lp(s,χ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_p(s,\chi )$$\end{document} has a Dirichlet series expansion for each regularization parameter c that is prime to p and the conductor of χ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi $$\end{document}. The expansion is proved by transforming a known formula for p-adic L-functions and by controlling the limiting behavior. A finite number of Euler factors can be factored off in a natural manner from the p-adic Dirichlet series. We also provide an alternative proof of the expansion using p-adic measures and give an explicit formula for the values of the regularized Bernoulli distribution. The result is particularly simple for c=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c=2$$\end{document}, where we obtain a Dirichlet series expansion that is similar to the complex case.
引用
收藏
页码:325 / 334
页数:9
相关论文
共 50 条