Computing the linear complexity for sequences with characteristic polynomial fv

被引:0
|
作者
Ana Sălăgean
Alex J. Burrage
Raphael C. -W. Phan
机构
[1] Loughborough University,Department of Computer Science
[2] Qualcomm,Faculty of Engineering
[3] Multimedia University,undefined
来源
关键词
Linear complexity; Games–Chan algorithm; Linear recurrent sequences; 11T71; 94A55;
D O I
暂无
中图分类号
学科分类号
摘要
We present several generalisations of the Games–Chan algorithm. For a fixed monic irreducible polynomial f we consider the sequences s that have as a characteristic polynomial a power of f. We propose an algorithm for computing the linear complexity of s given a full (not necessarily minimal) period of s. We give versions of the algorithm for fields of characteristic 2 and for arbitrary finite characteristic p, the latter generalising an algorithm of Ding et al. We also propose an algorithm which computes the linear complexity given only a finite portion of s (of length greater than or equal to the linear complexity), generalising an algorithm of Meidl. All our algorithms have linear computational complexity. The proposed algorithms can be further generalised to sequences for which it is known a priori that the irreducible factors of the minimal polynomial belong to a given small set of polynomials.
引用
收藏
页码:163 / 177
页数:14
相关论文
共 50 条