New Error Bounds for Legendre Approximations of Differentiable Functions

被引:0
|
作者
Haiyong Wang
机构
[1] Huazhong University of Science and Technology,School of Mathematics and Statistics
[2] Huazhong University of Science and Technology,Hubei Key Laboratory of Engineering Modeling and Scientific Computing
来源
Journal of Fourier Analysis and Applications | 2023年 / 29卷
关键词
Legendre approximations; Differentiable functions; Legendre coefficients; Legendre–Gauss–Lobatto functions; Optimal convergence rates; 41A25; 41A10;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we present a new perspective on error analysis for Legendre approximations of differentiable functions. We start by introducing a sequence of Legendre–Gauss–Lobatto polynomials and prove their theoretical properties, including an explicit and optimal upper bound. We then apply these properties to derive a new explicit bound for the Legendre coefficients of differentiable functions. Building on this, we establish an explicit and optimal error bound for Legendre approximations in the L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document} norm and an explicit and optimal error bound for Legendre approximations in the L∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{\infty }$$\end{document} norm under the condition that their maximum error is attained in the interior of the interval. Illustrative examples are provided to demonstrate the sharpness of our new results.
引用
收藏
相关论文
共 50 条
  • [41] Error bounds for approximations with deep ReLU networks
    Yarotsky, Dmitry
    NEURAL NETWORKS, 2017, 94 : 103 - 114
  • [42] Error bounds for asymptotic approximations of the partition function
    Birman, A
    Kogan, Y
    QUEUEING SYSTEMS, 1996, 23 (1-4) : 217 - 234
  • [43] Approximations and error bounds for computing the inverse mapping
    Jódar L.
    Ponsoda E.
    Rodríguez G.
    Applications of Mathematics, 1997, 42 (2) : 99 - 110
  • [44] TRANSPORT ERROR BOUNDS VIA PN APPROXIMATIONS
    DAVIS, JA
    NUCLEAR SCIENCE AND ENGINEERING, 1968, 31 (01) : 127 - &
  • [45] GLOBAL ERROR BOUNDS FOR APPROXIMATIONS OF SHELL DEFORMATIONS
    ANTES, H
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1975, 55 (09): : 491 - 501
  • [46] Error Bounds for Compositions of Piecewise Affine Approximations
    Glunt, Jonah J.
    Siefert, Jacob A.
    Thompson, Andrew F.
    Pangborn, Herschel C.
    IFAC PAPERSONLINE, 2024, 58 (11): : 43 - 50
  • [47] ERROR BOUNDS IN APPROXIMATION OF FUNCTIONS
    SAHNEY, BN
    RAO, VVG
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1972, 19 (02): : A315 - A315
  • [48] Bounds for Two New Subclasses of Bi-Univalent Functions Associated with Legendre Polynomials
    Lashin, Abdel Moneim Y.
    Badghaish, Abeer O.
    Bajamal, Amani Z.
    MATHEMATICS, 2021, 9 (24)
  • [49] CUBATURE ERROR BOUNDS FOR GAUSS-LEGENDRE PRODUCT RULES
    LETHER, FG
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1971, 8 (01) : 36 - &
  • [50] THE EXACT ERROR OF TRIGONOMETRIC INTERPOLATION FOR DIFFERENTIABLE FUNCTIONS
    SZABADOS, J
    CONSTRUCTIVE APPROXIMATION, 1992, 8 (02) : 203 - 210