On the well-posedness of the hyperelastic rod equation

被引:0
|
作者
Hasan Inci
机构
[1] MA C1 627 (Bâtiment MA),EPFL SB MATHAA PDE
[2] Koç University,Department of Mathematics
关键词
Hyperelastic rod equation; Solution map; diffeomorphism groups; 35Q35;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we consider the hyperelastic rod equation on the Sobolev spaces Hs(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^s({\mathbb {R}})$$\end{document}, s>3/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s > 3/2$$\end{document}. Using a geometric approach we show that for any T>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T > 0$$\end{document} the corresponding solution map, u(0)↦u(T)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u(0) \mapsto u(T)$$\end{document}, is nowhere locally uniformly continuous. The method applies also to the periodic case Hs(T)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^s({\mathbb {T}})$$\end{document}, s>3/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s > 3/2$$\end{document}.
引用
收藏
页码:795 / 802
页数:7
相关论文
共 50 条
  • [31] A Note on the Local Well-Posedness for the Whitham Equation
    Ehrnstrom, Mats
    Escher, Joachim
    Pei, Long
    ELLIPTIC AND PARABOLIC EQUATIONS, 2015, 119 : 63 - 75
  • [32] ON WELL-POSEDNESS OF A MIXED PROBLEM FOR THE WAVE EQUATION
    Gordienko, V. M.
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2010, 7 : C130 - C138
  • [33] THE WELL-POSEDNESS OF THE KURAMOTO-SIVASHINSKY EQUATION
    TADMOR, E
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1986, 17 (04) : 884 - 893
  • [34] On the Well-Posedness of the Dissipative Kadomtsev–Petviashvili Equation
    H. Wang
    A. Esfahani
    Mathematical Notes, 2020, 107 : 333 - 344
  • [35] On well-posedness of the semilinear heat equation on the sphere
    Fabio Punzo
    Journal of Evolution Equations, 2012, 12 : 571 - 592
  • [36] On well-posedness for the Benjamin-Ono equation
    Burq, Nicolas
    Planchon, Fabrice
    MATHEMATISCHE ANNALEN, 2008, 340 (03) : 497 - 542
  • [37] Well-posedness and stability results for the Gardner equation
    Miguel A. Alejo
    Nonlinear Differential Equations and Applications NoDEA, 2012, 19 : 503 - 520
  • [38] Well-posedness results for the short pulse equation
    Giuseppe Maria Coclite
    Lorenzo di Ruvo
    Zeitschrift für angewandte Mathematik und Physik, 2015, 66 : 1529 - 1557
  • [39] Well-posedness result for the Kuramoto–Velarde equation
    Giuseppe Maria Coclite
    Lorenzo di Ruvo
    Bollettino dell'Unione Matematica Italiana, 2021, 14 : 659 - 679
  • [40] Local well-posedness of a new integrable equation
    Liu, YQ
    Wang, WK
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2006, 64 (11) : 2516 - 2526