Intermittency in stochastically perturbed turbulent models

被引:0
|
作者
L. Biferale
M. Cencini
D. Pierotti
A. Vulpiani
机构
[1] Università di Tor Vegata,Dipartimento di Fisica
[2] Istituto Nazionale Fisica della Materia,Dipartimento di Fisica
[3] unità “Roma Tor Vergata”,Dipartimento di Fisica
[4] Università di Roma “la Sapienza”,undefined
[5] Università dell’ Aquila,undefined
[6] Istituto Nazionale Fisica della Materia,undefined
[7] unità di Roma,undefined
来源
关键词
Fully developed turbulence; intermittency; random maps; large deviations;
D O I
暂无
中图分类号
学科分类号
摘要
Random dynamical models obtained as a perturbation of the GOY (Gledzer-Ohkitani-Yamada) shell model for three-dimensional turbulence are defined. Both static (time-independent) and dynamical scaling properties of the randomly perturbed model are studied. The random static-inviscid manifold, in contrast to the dynamical evolution, does not show intermittent scaling laws. This behavior is linked to the absence of large deviation in the random-map connecting fluctuations of velocities at different scales. The importance of inviscid conserved quantities on the intermittent statistics is discussed. Different random dynamical perturbations such that only energy is conserved in the inviscid and unforced limit are investigated. Intermittency is weakly affected by random perturbations.
引用
收藏
页码:1117 / 1138
页数:21
相关论文
共 50 条
  • [11] The ergodicity and extinction of stochastically perturbed SIR and SEIR epidemic models with saturated incidence
    Yang, Qingshan
    Jiang, Daqing
    Shi, Ningzhong
    Ji, Chunyan
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 388 (01) : 248 - 271
  • [12] Perturbed on-off intermittency
    Marthaler, D.
    Armbruster, D.
    Lai, Y.-C.
    Kostelich, E.J.
    2001, American Institute of Physics Inc. (64):
  • [13] Perturbed on-off intermittency
    Marthaler, D
    Armbruster, D
    Lai, YC
    Kostelich, EJ
    PHYSICAL REVIEW E, 2001, 64 (01):
  • [14] Stochastically Perturbed Chains of Variable Memory
    Garcia, Nancy L.
    Moreira, Lucas
    JOURNAL OF STATISTICAL PHYSICS, 2015, 159 (05) : 1107 - 1126
  • [15] The stability of stochastically perturbed orbital motions
    Ryashko, LB
    PMM JOURNAL OF APPLIED MATHEMATICS AND MECHANICS, 1996, 60 (04): : 579 - 590
  • [16] STOCHASTICALLY PERTURBED LIMIT-CYCLES
    HOLLAND, CJ
    JOURNAL OF APPLIED PROBABILITY, 1978, 15 (02) : 311 - 320
  • [17] Stochastically Perturbed Chains of Variable Memory
    Nancy L. Garcia
    Lucas Moreira
    Journal of Statistical Physics, 2015, 159 : 1107 - 1126
  • [18] STOCHASTICALLY PERTURBED HOPF-BIFURCATION
    NAMACHCHIVAYA, NS
    ARIARATNAM, ST
    INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 1987, 22 (05) : 363 - 372
  • [19] Capturing turbulent intermittency
    van de Water, W
    Staicu, A
    Guegan, MC
    INTERMITTENCY IN TURBULENT FLOWS, 2001, : 213 - 222
  • [20] Stabilization of stochastically perturbed nonlinear oscillations
    Ryashko, L. B.
    AUTOMATION AND REMOTE CONTROL, 2007, 68 (10) : 1871 - 1880