Half inverse problem and interior inverse problem for the Dirac operators with discontinuity

被引:0
|
作者
Wang, Kai [1 ]
Zhang, Ran [2 ]
Yang, Chuan-Fu [3 ]
机构
[1] Nanjing Univ Posts & Telecommun, Sch Internet Things, Nanjing 210023, Jiangsu, Peoples R China
[2] Nanjing Univ Posts & Telecommun, Sch Sci, Nanjing 210023, Jiangsu, Peoples R China
[3] Nanjing Univ Sci & Technol, Sch Math & Stat, Nanjing 210094, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Dirac operator; Discontinuous condition; Interior inverse problems; Uniqueness theorem; SPECTRAL DATA;
D O I
10.1007/s13324-024-00913-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the half inverse problem and interior inverse problems for Dirac operators with discontinuity inside the interval (0, T) is considered. It is shown that (i) if the potential is given on (0,(1+alpha)T4)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Big (0,\frac{(1+\alpha )T}{4}\Big )$$\end{document}, then one spectrum can uniquely determine the potential on the whole interval; (ii) one spectrum and a set of values of eigenfunctions at some internal points can also uniquely determine the potential on the whole interval.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] An interior inverse scattering problem in elasticity
    Ou Yunhui
    Zeng Fang
    [J]. APPLICABLE ANALYSIS, 2022, 101 (03) : 796 - 809
  • [42] An Interior Inverse Problem for the Diffusion Operator
    Dabbaghian, A.
    Jafari, H.
    Yosofi, N.
    [J]. ABSTRACT AND APPLIED ANALYSIS, 2013,
  • [43] On an inverse scattering problem for a class of Dirac operators with spectral parameter in the boundary condition
    Col, Aynur
    Mamedov, Kh. R.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 393 (02) : 470 - 478
  • [44] THE INVERSE PROBLEM OF ONE CLASS OF DIRAC OPERATORS WITH DISCONTINUOUS COEFFICIENTS BY THE WEYL FUNCTION
    Latifova, Aygun R.
    [J]. PROCEEDINGS OF THE INSTITUTE OF MATHEMATICS AND MECHANICS, 2005, 22 (30): : 65 - 70
  • [45] Inverse Spectral Problem for Band Operators and Their Sparsity Criterion In Terms of Inverse Problem Data
    Osipov, A. S.
    [J]. RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS, 2022, 29 (02) : 225 - 237
  • [46] On the inverse conductivity problem in the half space
    Ciulli, S
    Pidcock, MK
    Sebu, C
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2003, 83 (11): : 755 - 765
  • [47] Inverse Spectral Problem for Band Operators and Their Sparsity Criterion In Terms of Inverse Problem Data
    A. S. Osipov
    [J]. Russian Journal of Mathematical Physics, 2022, 29 : 225 - 237
  • [48] The inverse resonance problem for Jacobi operators
    Brown, BM
    Naboko, S
    Weikard, R
    [J]. BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2005, 37 : 727 - 737
  • [49] The Inverse Resonance Problem for Hermite Operators
    Brown, B. Malcolm
    Naboko, Serguei
    Weikard, Rudi
    [J]. CONSTRUCTIVE APPROXIMATION, 2009, 30 (02) : 155 - 174
  • [50] On the Inverse Resonance Problem for Schrodinger Operators
    Marlettta, Marco
    Shterenberg, Roman
    Weikard, Rudi
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2010, 295 (02) : 465 - 484