Spark plasma sintering of Al-SiC composites with high SiC content: study of microstructure and tribological properties

被引:2
|
作者
Leszczynska-Madej, Beata [1 ]
Madej, Marcin [2 ]
Wasik, Anna [1 ]
Garbiec, Dariusz [3 ]
机构
[1] AGH Univ Sci & Technol, Fac Nonferrous Met, 30 Mickiewicza Ave, PL-30059 Krakow, Poland
[2] AGH Univ Sci & Technol, Fac Met Engn & Ind Comp Sci, 30 Mickiewicza Ave, PL-300059 Krakow, Poland
[3] Pozna Inst Technol, Lukasiewicz Res Network, 6 Ewarysta Estkowskiego St, PL-61755 Poznan, Poland
关键词
Al-SiC composites; Spark plasma sintering; X-ray analysis; Scanning electron microscopy; Tribological properties; Wear mechanisms; HIGH-VOLUME FRACTION; MECHANICAL-PROPERTIES; WEAR BEHAVIOR; PARTICLES; REINFORCEMENT; INTERFACE;
D O I
10.1007/s43452-023-00771-y
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
The article presents the results of the microstructure and tribological properties of Al-xSiC composites (x = 70 and 90 wt% SiC) produced in spark plasma sintering (SPS). Due to their attractive thermal, physical, and mechanical properties, aluminum matrix composites with high-volume fractions of silicon carbide (> 50%) have become a major area of interest as a potential material for multifunctional electronic packaging and cryogenic applications. The SPS process was carried out in a vacuum atmosphere under various conditions. Composites with a density close to theoretical (96-98%) were obtained. X-ray diffraction and scanning electron microscopy with EDS analysis were used to characterize the microstructure. Mechanical properties were determined by hardness measurements and a three-point bending test. The tribological properties of the composites were determined utilizing a block-on-ring tribotester. As a criterion for wear resistance, weight loss measured under specific friction conditions, that is, depending on the type of material and the applied load, was adopted. The researched materials were characterized by an even distribution of the carbide phase in the matrix. Composites with the highest SiC phase content (90 wt%) had higher hardness (2537 HV1) and flexural strength (242 +/- 15 MPa) with worse wear resistance at the same time. The weight loss of this composite was 0.43 and 0.76% for friction under loads of 100 and 200 N, respectively, and was 360 and 270% higher than that determined for the composites with the lower content of the SiC phase (70 wt%). The wear rate was three times higher for the Al-90wt%SiC composites.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] CONSOLIDATION OF Mg-SiC COMPOSITES BY SPARK PLASMA SINTERING
    Garbiec, Dariusz
    COMPOSITES THEORY AND PRACTICE, 2016, 16 (02): : 74 - 78
  • [42] Effect of SiC Particle Size on Microstructure, Mechanical Properties, and Oxidation Behavior of HfB2–SiC Composites Prepared by Spark Plasma Sintering
    M. Sakvand
    M. Shojaie-Bahaabad
    L. Nikzad
    Russian Journal of Inorganic Chemistry, 2022, 67 : 1682 - 1693
  • [43] Effect of SiC Particle Size on Microstructure, Mechanical Properties, and Oxidation Behavior of HfB2-SiC Composites Prepared by Spark Plasma Sintering
    Sakvand, M.
    Shojaie-Bahaabad, M.
    Nikzad, L.
    RUSSIAN JOURNAL OF INORGANIC CHEMISTRY, 2022, 67 (10) : 1682 - 1693
  • [44] Joining of C/SiC composites by spark plasma sintering technique
    Rizzo, Stefano
    Grasso, Salvatore
    Salvo, Milena
    Casalegno, Valentina
    Reece, Michael J.
    Ferraris, Monica
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2014, 34 (04) : 903 - 913
  • [45] Properties and Process of SiC Preparation by Spark Plasma Sintering
    Qi Wu-Bin
    Chen Yu-Hong
    Zhang Xiu-Ling
    Hai Wan-xiu
    Hong Tian-xiang
    POWDER METALLURGY AND METAL CERAMICS, 2022, 61 (3-4) : 180 - 188
  • [46] Lossy AlN–SiC composites fabricated by spark plasma sintering
    Xiang-Yu Zhang
    Shou-Hong Tan
    Jing-Xian Zhang
    Dong-Liang Jiang
    Bo Hu
    Chen Gao
    Journal of Materials Research, 2004, 19 : 2759 - 2764
  • [47] Mechanical properties of β-SiC fabricated by spark plasma sintering
    Takeshi A. Yamamoto
    Takayuki Kondou
    Yasuhiro Kodera
    Takashi Ishii
    Manshi Ohyanagi
    Zuhair A. Munir
    Journal of Materials Engineering and Performance, 2005, 14 : 460 - 466
  • [48] EXPLOSIVE COMPACTION OF AL-SIC COMPOSITES
    SIVAKUMAR, K
    MAHAJAN, YR
    RAMAKRISHNAN, N
    BHANUPRASAD, VV
    INTERNATIONAL JOURNAL OF POWDER METALLURGY, 1992, 28 (01): : 63 - 68
  • [49] Mechanical properties of β-SiC fabricated by spark plasma sintering
    Yamamoto, TA
    Kondou, T
    Kodera, Y
    Ishii, T
    Ohyanagi, M
    Munir, ZA
    JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2005, 14 (04) : 460 - 466
  • [50] Properties and Process of SiC Preparation by Spark Plasma Sintering
    Qi Wu-Bin
    Chen Yu-Hong
    Zhang Xiu-Ling
    Hai Wan-xiu
    Hong Tian-xiang
    Powder Metallurgy and Metal Ceramics, 2022, 61 : 180 - 188