Cubic Liénard equations with quadratic damping having two antisaddles

被引:0
|
作者
Dumortier F. [1 ]
Kooij R.E. [2 ]
Li C. [3 ]
机构
[1] Limburgs Universitair Centrum, B-3590 Diepenbeek, Universitaire Campus
[2] KPN Research, 2260 AK Leidschendam
[3] Department of Mathematics and Institute of Mathematics, Peking University
关键词
Quadratic System; Weak Singularity; Weak Focus; Unique Singularity; Dulac Function;
D O I
10.1007/BF02969477
中图分类号
学科分类号
摘要
The paper deals with differential equations of the form ẋ =y, ẏ= -g(x)-f(x)y, with f and g polynomials of degree respectively two and three. They are called cubic Liénard equations with quadratic damping. Attention goes to the case in which the equations have three singular points of which one is a saddle and two are antisaddles. A lot of results are given on the upper-bound for the number of limit cycles, depending on the relative position of the zeros off andg on the x-axis. © 2000 Birkhäuser-Verlag.
引用
收藏
页码:163 / 209
页数:46
相关论文
共 50 条
  • [21] Homoclinic solutions for a class of relativistic Liénard equations
    Shiping Lu
    Shile Zhou
    Xingchen Yu
    Journal of Fixed Point Theory and Applications, 2021, 23
  • [22] Solutions of cubic equations in quadratic fields
    Chakraborty, K
    Kulkarni, MV
    ACTA ARITHMETICA, 1999, 89 (01) : 37 - 43
  • [23] CUBIC LIENARD EQUATIONS WITH LINEAR DAMPING
    DUMORTIER, F
    ROUSSEAU, C
    NONLINEARITY, 1990, 3 (04) : 1015 - 1039
  • [24] Liouvillian integrability of some quadratic Liénard polynomial differential systems
    Claudia Valls
    Rendiconti del Circolo Matematico di Palermo Series 2, 2019, 68 : 499 - 519
  • [25] A class of generalized Liénard equations with high power damping and its applications to the KP-Burgers type equation
    Hu, Yanxia
    Liu, Shaoru
    PHYSICA SCRIPTA, 2025, 100 (03)
  • [26] An analysis of the nonlinearizable classes of Emden-Liénard equations
    Ahmed, M.
    Kara, A. H.
    AFRIKA MATEMATIKA, 2025, 36 (02)
  • [27] Highest weak focus order for trigonometric Liénard equations
    Armengol Gasull
    Jaume Giné
    Claudia Valls
    Annali di Matematica Pura ed Applicata (1923 -), 2020, 199 : 1673 - 1684
  • [28] On the integrability conditions for a family of Li,nard-type equations
    Kudryashov, N. A.
    Sinelshchikov, D. I.
    REGULAR & CHAOTIC DYNAMICS, 2016, 21 (05): : 548 - 555
  • [29] Local Bifurcation of Critical Periods for a Class of Liénard Equations
    Yi SHAO
    Chun-xiang A
    Acta Mathematicae Applicatae Sinica, 2014, (03) : 627 - 634
  • [30] Hilbert’s Sixteenth Problem for Polynomial Liénard Equations
    Magdalena Caubergh
    Qualitative Theory of Dynamical Systems, 2012, 11 : 3 - 18