Cubic Liénard equations with quadratic damping having two antisaddles

被引:0
|
作者
Dumortier F. [1 ]
Kooij R.E. [2 ]
Li C. [3 ]
机构
[1] Limburgs Universitair Centrum, B-3590 Diepenbeek, Universitaire Campus
[2] KPN Research, 2260 AK Leidschendam
[3] Department of Mathematics and Institute of Mathematics, Peking University
关键词
Quadratic System; Weak Singularity; Weak Focus; Unique Singularity; Dulac Function;
D O I
10.1007/BF02969477
中图分类号
学科分类号
摘要
The paper deals with differential equations of the form ẋ =y, ẏ= -g(x)-f(x)y, with f and g polynomials of degree respectively two and three. They are called cubic Liénard equations with quadratic damping. Attention goes to the case in which the equations have three singular points of which one is a saddle and two are antisaddles. A lot of results are given on the upper-bound for the number of limit cycles, depending on the relative position of the zeros off andg on the x-axis. © 2000 Birkhäuser-Verlag.
引用
收藏
页码:163 / 209
页数:46
相关论文
共 50 条
  • [1] Quartic Liénard Equations with Linear Damping
    R. Huzak
    Qualitative Theory of Dynamical Systems, 2019, 18 : 603 - 614
  • [2] Vibration of the Liénard Oscillator with Quadratic Damping and Constant Excitation
    Cveticanin, Livija
    Herisanu, Nicolae
    Ismail, Gamal Mohamed
    Zukovic, Miodrag
    MATHEMATICS, 2025, 13 (06)
  • [3] Limit Cycles of a Class of Cubic Liénard Equations
    Huatao Jin
    Shuliang Shui
    Qualitative Theory of Dynamical Systems, 2011, 10 : 317 - 326
  • [4] Cubic Lienard equations with quadratic damping (II)
    Wang Y.-Q.
    Jing Z.-J.
    Acta Mathematicae Applicatae Sinica, 2002, 18 (1) : 103 - 116
  • [5] Phase portraits of two classes of Liénard equations
    Jie Li
    Jaume Llibre
    Boletín de la Sociedad Matemática Mexicana, 2023, 29
  • [6] Local bifurcations of critical periods for quartic Lié nard equations with quintic damping
    Li Hongwei
    Advances in Difference Equations, 2012
  • [7] Quadratic Lienard equations with quadratic damping
    Dumortier, F
    Li, CZ
    JOURNAL OF DIFFERENTIAL EQUATIONS, 1997, 139 (01) : 41 - 59
  • [8] On the Integrability of the Abel and of the Extended Liénard Equations
    Man Kwong Mak
    Tiberiu Harko
    Acta Mathematicae Applicatae Sinica, English Series, 2019, 35 : 722 - 736
  • [9] On the Integrability of the Abel and of the Extended Liénard Equations
    Man Kwong Mak
    Tiberiu HARKO
    Acta Mathematicae Applicatae Sinica, 2019, 35 (04) : 722 - 736
  • [10] Random periodicity for stochastic Liénard equations
    Uda, Kenneth
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2024, 130