Better Distance Labeling for Unweighted Planar Graphs

被引:0
|
作者
Paweł Gawrychowski
Przemysław Uznański
机构
[1] University of Wrocław,
来源
Algorithmica | 2023年 / 85卷
关键词
Distance labeling; Planar graphs; Voronoi diagrams;
D O I
暂无
中图分类号
学科分类号
摘要
A distance labeling scheme is an assignment of labels, that is, binary strings, to all nodes of a graph, so that the distance between any two nodes can be computed from their labels without any additional information about the graph. The goal is to minimize the maximum length of a label as a function of the number of nodes. A major open problem in this area is to determine the complexity of distance labeling in unweighted planar (undirected) graphs. It is known that, in such a graph on n nodes, some labels must consist of Ω(n1/3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varOmega (n^{1/3})$$\end{document} bits, but the best known labeling scheme constructs labels of length O(nlogn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(\sqrt{n}\log n)$$\end{document} (Gavoille, Peleg, Pérennes, and Raz in J Algorithms 53:85–112, 2004). For weighted planar graphs with edges of length polynomial in n, we know that labels of length Ω(nlogn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varOmega (\sqrt{n}\log n)$$\end{document} are necessary (Abboud and Dahlgaard in FOCS, 2016). Surprisingly, we do not know if distance labeling for weighted planar graphs with edges of length polynomial in n is harder than distance labeling for unweighted planar graphs. We prove that this is indeed the case by designing a distance labeling scheme for unweighted planar graphs on n nodes with labels consisting of O(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(\sqrt{n})$$\end{document} bits with a simple and (in our opinion) elegant method. We also show how to extend this to graphs with small weight and (unweighted) graphs with bounded genus. We augment the construction for unweighted planar graphs with a mechanism (based on Voronoi diagrams) that allows us to compute the distance between two nodes in only polylogarithmic time while increasing the length to O(nlogn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(\sqrt{n\log n})$$\end{document}. The previous scheme required Ω(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varOmega (\sqrt{n})$$\end{document} time to answer a query in this model.
引用
收藏
页码:1805 / 1823
页数:18
相关论文
共 50 条
  • [31] Efficient estimation of the modified Gromov-Hausdorff distance between unweighted graphs
    Oles, Vladyslav
    Lemons, Nathan
    Panchenko, Alexander
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2024, 48 (02)
  • [32] Labeling Total Graphs with a Condition at Distance Two
    Shao, Zhendong
    Solis-Oba, Roberto
    ARS COMBINATORIA, 2018, 140 : 97 - 111
  • [33] A survey on labeling graphs with a condition at distance two
    Yeh, Roger K.
    DISCRETE MATHEMATICS, 2006, 306 (12) : 1217 - 1231
  • [34] LABELING CHORDAL GRAPHS - DISTANCE 2 CONDITION
    SAKAI, D
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 1994, 7 (01) : 133 - 140
  • [35] On Distance Antimagic Labeling of Some Product Graphs
    Yadav, Anjali
    Minirani, S.
    IAENG International Journal of Applied Mathematics, 2024, 54 (10) : 2092 - 2098
  • [36] Labeling Mycielski Graphs with a Condition at Distance Two
    Shao, Zhendong
    Solis-Oba, Roberto
    ARS COMBINATORIA, 2018, 140 : 337 - 349
  • [37] DISTANCE TWO LABELING ON SPECIAL FAMILY OF GRAPHS
    Murugan, Muthali
    MATEMATICHE, 2015, 70 (02): : 35 - 48
  • [38] LABELING GRAPHS WITH A CONDITION AT DISTANCE-2
    GRIGGS, JR
    YEH, RK
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 1992, 5 (04) : 586 - 595
  • [39] A Labeling Algorithm for Distance Domination on Block Graphs
    Zhao, Yancai
    Shan, Erfang
    Liang, Zuosong
    Gao, Ruzhao
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2014, 37 (04) : 965 - 970
  • [40] Distance Magic Labeling and Two Products of Graphs
    Marcin Anholcer
    Sylwia Cichacz
    Iztok Peterin
    Aleksandra Tepeh
    Graphs and Combinatorics, 2015, 31 : 1125 - 1136