Better Distance Labeling for Unweighted Planar Graphs

被引:0
|
作者
Paweł Gawrychowski
Przemysław Uznański
机构
[1] University of Wrocław,
来源
Algorithmica | 2023年 / 85卷
关键词
Distance labeling; Planar graphs; Voronoi diagrams;
D O I
暂无
中图分类号
学科分类号
摘要
A distance labeling scheme is an assignment of labels, that is, binary strings, to all nodes of a graph, so that the distance between any two nodes can be computed from their labels without any additional information about the graph. The goal is to minimize the maximum length of a label as a function of the number of nodes. A major open problem in this area is to determine the complexity of distance labeling in unweighted planar (undirected) graphs. It is known that, in such a graph on n nodes, some labels must consist of Ω(n1/3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varOmega (n^{1/3})$$\end{document} bits, but the best known labeling scheme constructs labels of length O(nlogn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(\sqrt{n}\log n)$$\end{document} (Gavoille, Peleg, Pérennes, and Raz in J Algorithms 53:85–112, 2004). For weighted planar graphs with edges of length polynomial in n, we know that labels of length Ω(nlogn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varOmega (\sqrt{n}\log n)$$\end{document} are necessary (Abboud and Dahlgaard in FOCS, 2016). Surprisingly, we do not know if distance labeling for weighted planar graphs with edges of length polynomial in n is harder than distance labeling for unweighted planar graphs. We prove that this is indeed the case by designing a distance labeling scheme for unweighted planar graphs on n nodes with labels consisting of O(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(\sqrt{n})$$\end{document} bits with a simple and (in our opinion) elegant method. We also show how to extend this to graphs with small weight and (unweighted) graphs with bounded genus. We augment the construction for unweighted planar graphs with a mechanism (based on Voronoi diagrams) that allows us to compute the distance between two nodes in only polylogarithmic time while increasing the length to O(nlogn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(\sqrt{n\log n})$$\end{document}. The previous scheme required Ω(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varOmega (\sqrt{n})$$\end{document} time to answer a query in this model.
引用
收藏
页码:1805 / 1823
页数:18
相关论文
共 50 条
  • [1] Better Distance Labeling for Unweighted Planar Graphs
    Gawrychowski, Pawel
    Uznanski, Przemyslaw
    ALGORITHMICA, 2023, 85 (06) : 1805 - 1823
  • [2] Better Distance Labeling for Unweighted Planar Graphs
    Gawrychowski, Pawel
    Uznanski, Przemyslaw
    ALGORITHMS AND DATA STRUCTURES, WADS 2021, 2021, 12808 : 428 - 441
  • [3] Labeling planar graphs with a condition at distance two
    Bella, Peter
    Kral, Daniel
    Mohar, Bojan
    Quittnerova, Katarina
    EUROPEAN JOURNAL OF COMBINATORICS, 2007, 28 (08) : 2201 - 2239
  • [4] Constant time distance queries in planar unweighted graphs with subquadratic preprocessing time
    Wulff-Nilsen, Christian
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2013, 46 (07): : 831 - 838
  • [5] Labeling planar graphs with conditions on girth and distance two
    Wang, WF
    Lih, KW
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2003, 17 (02) : 264 - 275
  • [6] Fault-tolerant distance labeling for planar graphs
    Bar-Natan, Aviv
    Charalampopoulos, Panagiotis
    Gawrychowski, Pawel
    Mozes, Shay
    Weimann, Oren
    THEORETICAL COMPUTER SCIENCE, 2022, 918 : 48 - 59
  • [7] Better Tradeoffs for Exact Distance Oracles in Planar Graphs
    Gawrychowski, Pawel
    Mozes, Shay
    Weimann, Oren
    Wulff-Nilsen, Christian
    SODA'18: PROCEEDINGS OF THE TWENTY-NINTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2018, : 515 - 529
  • [8] Distance labeling in graphs
    Gavoille, C
    Peleg, D
    Pérennes, S
    Raz, R
    JOURNAL OF ALGORITHMS, 2004, 53 (01) : 85 - 112
  • [9] LABELING ANGLES OF PLANAR GRAPHS
    LOUPEKINE, F
    WATKINS, JJ
    DISCRETE MATHEMATICS, 1988, 72 (1-3) : 251 - 256
  • [10] Distance labeling in hyperbolic graphs
    Gavoille, C
    Ly, O
    ALGORITHMS AND COMPUTATION, 2005, 3827 : 1071 - 1079