A practical greedy approximation for the directed Steiner tree problem

被引:0
|
作者
Dimitri Watel
Marc-Antoine Weisser
机构
[1] CEDRIC-CNAM 292 rue Saint-Martin,LRI, CentraleSupélec
[2] Université Paris-Saclay,undefined
来源
关键词
Directed Steiner tree; Approximation algorithm; Greedy algorithm;
D O I
暂无
中图分类号
学科分类号
摘要
The directed Steiner tree (DST) NP-hard problem asks, considering a directed weighted graph with n nodes and m arcs, a node r called root and a set of k nodes X called terminals, for a minimum cost directed tree rooted at r spanning X. The best known polynomial approximation ratio for DST is a O(kε)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(k^\varepsilon )$$\end{document}-approximation greedy algorithm. However, a much faster k-approximation, returning the shortest paths from r to X, is generally used in practice. We give two new algorithms : a fast k-approximation called GreedyFLAC\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_\text {FLAC}$$\end{document} running in O(mlog(n)k+min(m,nk)nk2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(m \log (n)k + \min (m, nk)nk^2)$$\end{document} and a O(k)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(\sqrt{k})$$\end{document}-approximation called GreedyFLAC▹\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_\text {FLAC}^\triangleright $$\end{document} running in O(nm+n2log(n)k+n2k3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(nm + n^2 \log (n)k +n^2 k^3)$$\end{document}. We provide computational results to show that, GreedyFLAC\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_\text {FLAC}$$\end{document} rivals in practice with the running time of the fast k-approximation and returns solution with smaller cost in practice.
引用
收藏
页码:1327 / 1370
页数:43
相关论文
共 50 条
  • [31] Improved approximation algorithms for the Quality of Service Steiner Tree Problem
    Karpinski, M
    Mandoiu, II
    Olshevsky, A
    Zelikovsky, A
    ALGORITHMS AND DATA STRUCTURES, PROCEEDINGS, 2003, 2748 : 401 - 411
  • [32] AN EFFICIENT APPROXIMATION ALGORITHM FOR THE STEINER TREE PROBLEM IN RECTILINEAR GRAPHS
    SAKAI, K
    TSUJI, K
    MATSUMOTO, T
    1989 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOLS 1-3, 1989, : 339 - 342
  • [33] Approximation for Strategic Single Point Weighted Steiner Tree Problem
    Wang, Nan
    Wu, Jun
    Wang, Chongjun
    Zhang, Lei
    2017 IEEE INTERNATIONAL CONFERENCE ON AGENTS (ICA), 2017, : 134 - 139
  • [34] Approximation algorithm for bottleneck Steiner tree problem in the Euclidean plane
    Li, ZM
    Zhu, DM
    Ma, SH
    JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY, 2004, 19 (06) : 791 - 794
  • [35] Approximation algorithm for bottleneck Steiner tree problem in the Euclidean plane
    Zi-Mao Li
    Da-Ming Zhu
    Shao-Han Ma
    Journal of Computer Science and Technology, 2004, 19 : 791 - 794
  • [36] Approximation Algorithm for Stochastic Prize-Collecting Steiner Tree Problem
    Sun, Jian
    Sheng, Haiyun
    Sun, Yuefang
    Zhang, Xiaoyan
    ALGORITHMIC ASPECTS IN INFORMATION AND MANAGEMENT, AAIM 2019, 2019, 11640 : 261 - 271
  • [37] An Improved Approximation Ratio to the Partial-Terminal Steiner Tree Problem
    Lee, Chia-Wei
    Huang, Chao-Wen
    Pi, Wen-Hao
    Hsieh, Sun-Yuan
    IEEE TRANSACTIONS ON COMPUTERS, 2015, 64 (01) : 274 - 279
  • [38] Approximation algorithms for directed Steiner problems
    Charikar, M
    Chekuri, C
    Cheung, TY
    Dai, Z
    Goel, A
    Guha, S
    Li, M
    JOURNAL OF ALGORITHMS-COGNITION INFORMATICS AND LOGIC, 1999, 33 (01): : 73 - 91
  • [39] Approximation algorithms for Steiner and directed multicuts
    Klein, PN
    Plotkin, SA
    Rao, S
    Tardos, E
    JOURNAL OF ALGORITHMS, 1997, 22 (02) : 241 - 269
  • [40] Approximation algorithm for solving the 1-line Steiner tree problem with minimum number of Steiner points
    Liu, Suding
    OPTIMIZATION LETTERS, 2024, 18 (06) : 1421 - 1435