A practical greedy approximation for the directed Steiner tree problem

被引:0
|
作者
Dimitri Watel
Marc-Antoine Weisser
机构
[1] CEDRIC-CNAM 292 rue Saint-Martin,LRI, CentraleSupélec
[2] Université Paris-Saclay,undefined
来源
关键词
Directed Steiner tree; Approximation algorithm; Greedy algorithm;
D O I
暂无
中图分类号
学科分类号
摘要
The directed Steiner tree (DST) NP-hard problem asks, considering a directed weighted graph with n nodes and m arcs, a node r called root and a set of k nodes X called terminals, for a minimum cost directed tree rooted at r spanning X. The best known polynomial approximation ratio for DST is a O(kε)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(k^\varepsilon )$$\end{document}-approximation greedy algorithm. However, a much faster k-approximation, returning the shortest paths from r to X, is generally used in practice. We give two new algorithms : a fast k-approximation called GreedyFLAC\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_\text {FLAC}$$\end{document} running in O(mlog(n)k+min(m,nk)nk2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(m \log (n)k + \min (m, nk)nk^2)$$\end{document} and a O(k)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(\sqrt{k})$$\end{document}-approximation called GreedyFLAC▹\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_\text {FLAC}^\triangleright $$\end{document} running in O(nm+n2log(n)k+n2k3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(nm + n^2 \log (n)k +n^2 k^3)$$\end{document}. We provide computational results to show that, GreedyFLAC\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_\text {FLAC}$$\end{document} rivals in practice with the running time of the fast k-approximation and returns solution with smaller cost in practice.
引用
收藏
页码:1327 / 1370
页数:43
相关论文
共 50 条
  • [1] A Practical Greedy Approximation for the Directed Steiner Tree Problem
    Watel, Dimitri
    Weisser, Marc-Antoine
    COMBINATORIAL OPTIMIZATION AND APPLICATIONS (COCOA 2014), 2014, 8881 : 200 - 215
  • [2] A practical greedy approximation for the directed Steiner tree problem
    Watel, Dimitri
    Weisser, Marc-Antoine
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2016, 32 (04) : 1327 - 1370
  • [3] FasterDSP: A faster approximation algorithm for directed Steiner tree problem
    Hsieh, Ming-I
    Wu, Eric Hsiao-Kuang
    Tsai, Meng-Feng
    JOURNAL OF INFORMATION SCIENCE AND ENGINEERING, 2006, 22 (06) : 1409 - 1425
  • [4] A series of approximation algorithms for the acyclic directed Steiner tree problem
    Zelikovsky, A
    ALGORITHMICA, 1997, 18 (01) : 99 - 110
  • [5] A series of approximation algorithms for the acyclic directed steiner tree problem
    A. Zelikovsky
    Algorithmica, 1997, 18 : 99 - 110
  • [6] A greedy approximation algorithm for the group Steiner problem
    Chekuri, C
    Even, G
    Kortsarz, G
    DISCRETE APPLIED MATHEMATICS, 2006, 154 (01) : 15 - 34
  • [7] Multi-rooted Greedy Approximation of Directed Steiner Trees with Applications
    Hibi, Tomoya
    Fujito, Toshihiro
    ALGORITHMICA, 2016, 74 (02) : 778 - 786
  • [8] Multi-rooted Greedy Approximation of Directed Steiner Trees with Applications
    Hibi, Tomoya
    Fujito, Toshihiro
    GRAPH-THEORETIC CONCEPTS IN COMPUTER SCIENCE, 2012, 7551 : 215 - 224
  • [9] Multi-rooted Greedy Approximation of Directed Steiner Trees with Applications
    Tomoya Hibi
    Toshihiro Fujito
    Algorithmica, 2016, 74 : 778 - 786
  • [10] An Efficient Approximation Algorithm for the Steiner Tree Problem
    Chen, Chi-Yeh
    Hsieh, Sun-Yuan
    COMPLEXITY AND APPROXIMATION: IN MEMORY OF KER-I KO, 2020, 12000 : 238 - 251