A machine learning model based on readers’ characteristics to predict their performances in reading screening mammograms

被引:0
|
作者
Ziba Gandomkar
Sarah J. Lewis
Tong Li
Ernest U. Ekpo
Patrick C. Brennan
机构
[1] University of Sydney,Image Optimisation and Perception Group (MIOPeG), Discipline of Medical Imaging Sciences, Faculty of Medicine and Health
来源
Breast Cancer | 2022年 / 29卷
关键词
Area under curve; Inter-observer variability; Machine learning; Mammography; ROC curve;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:589 / 598
页数:9
相关论文
共 50 条
  • [21] An improved machine learning-based model to predict estuarine water levels
    Gan, Min
    Chen, Yongping
    Pan, Shunqi
    Lai, Xijun
    Pan, Haidong
    Wen, Yuncheng
    Xia, Mingyan
    OCEAN MODELLING, 2024, 190
  • [22] A Model to Predict Crosscut Stress Based on an Improved Extreme Learning Machine Algorithm
    Liu, Xiaobo
    Yang, Lei
    Zhang, Xingfan
    ENERGIES, 2019, 12 (05)
  • [23] A MACHINE LEARNING-BASED MODEL TO PREDICT THE PRESENCE OF BARRETT'S ESOPHAGUS
    Lovat, Laurence
    Sami, Sarmed S.
    Graham, David G.
    Jevons, Sarah
    Eneh, Victor O.
    Ariza, Jose
    Hagan, Daryl A.
    Ocampo, Frelyn
    Novelli, Marco
    Rodriguez-Justo, Manuel
    Winstanley, Alison
    Heifetz, Eliyahu
    Ben-Zacharia, Mordehy
    Noiman, Uria
    Lovat, Samuel
    Fitzgerald, Rebecca C.
    Sasieni, Peter
    Rosenfeld, Avi
    GASTROENTEROLOGY, 2019, 156 (06) : S222 - S222
  • [24] A MACHINE LEARNING-BASED MODEL TO PREDICT OBSTRUCTIVE SLEEP APNEA IN PREGNANCY
    Wang, J.
    Han, F.
    SLEEP MEDICINE, 2024, 115 : 320 - 320
  • [25] A MACHINE LEARNING-BASED MODEL TO PREDICT THE PRESENCE OF BARRETT'S OESOPHAGUS
    Lovat, Laurence
    Sami, Sarmed
    Graham, David
    Ariza, Jose
    Hagan, Daryl
    Ocampo, Frelyn
    Novelli, Marco
    Rodriguez-Justo, Manuel
    Winstanley, Alison
    Heifetz, Eliyahu
    Ben-Zecharia, Mordehy
    Noiman, Uria
    Lovat, Samuel
    Fitzgerald, Rebecca
    Sasieni, Peter
    Rosenfeld, Avi
    GUT, 2019, 68 : A133 - A133
  • [26] A machine learning-based multiscale model to predict bone formation in scaffolds
    Chi Wu
    Ali Entezari
    Keke Zheng
    Jianguang Fang
    Hala Zreiqat
    Grant P. Steven
    Michael V. Swain
    Qing Li
    Nature Computational Science, 2021, 1 : 532 - 541
  • [27] Machine learning-based pedotransfer functions to predict soil water characteristics curves
    Pham, Khanh
    Kim, Dongku
    Le, Canh, V
    Won, Jongmuk
    TRANSPORTATION GEOTECHNICS, 2023, 42
  • [28] Machine learning to predict foodborne salmonellosis outbreaks based on genome characteristics and meteorological trends
    Karanth, Shraddha
    Patel, Jitendra
    Shirmohammadi, Adel
    Pradhan, Abani K.
    CURRENT RESEARCH IN FOOD SCIENCE, 2023, 6
  • [29] Machine Learning to Predict Stent Restenosis Based on Daily Demographic, Clinical, and Angiographic Characteristics
    Sampedro-Gomez, Jesus
    Ignacio Dorado-Diaz, P.
    Vicente-Palacios, Victor
    Sanchez-Puente, Antonio
    Jimenez-Navarro, Manuel
    Alberto San Roman, J.
    Galindo-Villardon, Purificacion
    Sanchez, Pedro L.
    Fernandez-Aviles, Francisco
    CANADIAN JOURNAL OF CARDIOLOGY, 2020, 36 (10) : 1624 - 1632
  • [30] Breast Tissue Density Classification in Mammograms Based on Supervised Machine Learning Technique
    Kashyap, Kanchan Lata
    Bajpai, Manish Kumar
    Khanna, Pritee
    COMPUTE'17: PROCEEDINGS OF THE 10TH ANNUAL ACM INDIA COMPUTE CONFERENCE, 2017, : 131 - 135