Twisted conjugacy classes in general and special linear groups

被引:0
|
作者
T. R. Nasybullov
机构
[1] Novosibirsk State University,
来源
Algebra and Logic | 2012年 / 51卷
关键词
linear group; twisted conjugacy classes; automorphism group; integral domain;
D O I
暂无
中图分类号
学科分类号
摘要
We consider twisted conjugacy classes and the R∞-property for classical linear groups. In particular, it is stated that the general linear group GLn(K) and the special linear group SLn(K), where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ n \geqslant 3 $$\end{document}, possess the R∞-property if either K is an infinite integral domain with trivial automorphism group or K is an integral domain containing a subring of integers, whose automorphism group Aut(K) is finite. By an integral domain we mean a commutative ring with identity which has no zero divisors.
引用
收藏
页码:220 / 231
页数:11
相关论文
共 50 条
  • [31] Parabolic conjugacy in general linear groups
    Goodwin, Simon M.
    Röhrle, Gerhard
    Journal of Algebraic Combinatorics, 2008, 27 (01): : 99 - 111
  • [32] Parabolic conjugacy in general linear groups
    Goodwin, Simon M.
    Roehrle, Gerhard
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2008, 27 (01) : 99 - 111
  • [33] Parabolic conjugacy in general linear groups
    Simon M. Goodwin
    Gerhard Röhrle
    Journal of Algebraic Combinatorics, 2008, 27 : 99 - 111
  • [34] On spherical twisted conjugacy classes
    Carnovale, G.
    TRANSFORMATION GROUPS, 2012, 17 (03) : 615 - 637
  • [35] On spherical twisted conjugacy classes
    G. CARNOVALE
    Transformation Groups, 2012, 17 : 615 - 637
  • [36] A THEOREM ABOUT FINITE GROUPS WITH SPECIAL CONJUGACY CLASSES
    Du, Xianglin
    Feng, Yuming
    Liu, Jinkui
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2014, (32): : 425 - 430
  • [37] A theorem about finite groups with special conjugacy classes
    Du, Xianglin
    Feng, Yuming
    Liu, Jinkui
    Italian Journal of Pure and Applied Mathematics, 2014, 32 : 425 - 430
  • [38] On a dimension formula for spherical twisted conjugacy classes in semisimple algebraic groups
    Jiang-Hua Lu
    Mathematische Zeitschrift, 2011, 269 : 1181 - 1188
  • [39] On a dimension formula for spherical twisted conjugacy classes in semisimple algebraic groups
    Lu, Jiang-Hua
    MATHEMATISCHE ZEITSCHRIFT, 2011, 269 (3-4) : 1181 - 1188
  • [40] On finite groups in which the twisted conjugacy classes of the unit element are subgroups
    Nicotera, Chiara
    ARCHIV DER MATHEMATIK, 2024, 123 (02) : 163 - 172