A brief guide to model selection, multimodel inference and model averaging in behavioural ecology using Akaike’s information criterion

被引:1
|
作者
Matthew R. E. Symonds
Adnan Moussalli
机构
[1] University of Melbourne,Department of Zoology
[2] Museum Victoria,Sciences Department
来源
关键词
Akaike’s information criterion; Information theory; Model averaging; Model selection; Multiple regression; Statistical methods;
D O I
暂无
中图分类号
学科分类号
摘要
Akaike’s information criterion (AIC) is increasingly being used in analyses in the field of ecology. This measure allows one to compare and rank multiple competing models and to estimate which of them best approximates the “true” process underlying the biological phenomenon under study. Behavioural ecologists have been slow to adopt this statistical tool, perhaps because of unfounded fears regarding the complexity of the technique. Here, we provide, using recent examples from the behavioural ecology literature, a simple introductory guide to AIC: what it is, how and when to apply it and what it achieves. We discuss multimodel inference using AIC—a procedure which should be used where no one model is strongly supported. Finally, we highlight a few of the pitfalls and problems that can be encountered by novice practitioners.
引用
收藏
页码:13 / 21
页数:8
相关论文
共 50 条
  • [41] The hydrologist's guide to Bayesian model selection, averaging and combination
    Hoege, M.
    Guthke, A.
    Nowak, W.
    JOURNAL OF HYDROLOGY, 2019, 572 : 96 - 107
  • [42] Nonlinear predictive model selection and model averaging using information criteria
    Gu, Yuanlin
    Wei, Hua-Liang
    Balikhin, Michael M.
    SYSTEMS SCIENCE & CONTROL ENGINEERING, 2018, 6 (01) : 319 - 328
  • [43] Repetitive model refinement for structural health monitoring using efficient Akaike information criterion
    Lin, Jeng-Wen
    SMART STRUCTURES AND SYSTEMS, 2015, 15 (05) : 1329 - 1344
  • [44] Clustering binary variables in subscales using an extended Rasch model and akaike information criterion
    Hardouin, JB
    Mesbah, M
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2004, 33 (06) : 1277 - 1294
  • [45] Model selection for time-activity curves: The corrected Akaike information criterion and the F-test
    Kletting, Peter
    Glatting, Gerhard
    ZEITSCHRIFT FUR MEDIZINISCHE PHYSIK, 2009, 19 (03): : 200 - 206
  • [46] Describing size-related mortality and size distribution by nonparametric estimation and model selection using the Akaike Bayesian Information Criterion
    Shimatani, Kenichiro
    Kawarasaki, Satoko
    Manabe, Tohru
    ECOLOGICAL RESEARCH, 2008, 23 (02) : 289 - 297
  • [47] Model averaging in ecology: a review of Bayesian, information-theoretic, and tactical approaches for predictive inference
    Dormann, Carsten F.
    Calabrese, Justin M.
    Guillera-Arroita, Gurutzeta
    Matechou, Eleni
    Bahn, Volker
    Barton, Kamil
    Beale, Colin M.
    Ciuti, Simone
    Elith, Jane
    Gerstner, Katharina
    Guelat, Jerome
    Keil, Petr
    Lahoz-Monfort, Jose J.
    Pollock, Laura J.
    Reineking, Bjoern
    Roberts, David R.
    Schroeder, Boris
    Thuiller, Wilfried
    Warton, David I.
    Wintle, Brendan A.
    Wood, Simon N.
    Wuest, Rafael O.
    Hartig, Florian
    ECOLOGICAL MONOGRAPHS, 2018, 88 (04) : 485 - 504
  • [48] Kinetics of contaminant desorption from soil: Comparison of model formulations using the akaike information criterion
    Saffron, Christopher M.
    Park, Jeong-Hun
    Dale, Bruce E.
    Voice, Thomas C.
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2006, 40 (24) : 7662 - 7667
  • [49] Exhaustive model selection in b → sll decays: Pitting cross-validation against the Akaike information criterion
    Bhattacharya, Srimoy
    Biswas, Aritra
    Nandi, Soumitra
    Patra, Sunando Kumar
    PHYSICAL REVIEW D, 2020, 101 (05)
  • [50] Uncertainty identification method using kriging surrogate model and Akaike information criterion for industrial electromagnetic device
    Kim, Saekyeol
    Lee, Soo-Gyung
    Kim, Ji-Min
    Lee, Tae Hee
    Lim, Myung-Seop
    IET SCIENCE MEASUREMENT & TECHNOLOGY, 2020, 14 (03) : 250 - 258