Information Matrices for Non Full Rank Subsystems

被引:0
|
作者
Pierre Druilhet
Augustyn Markiewicz
机构
[1] CREST-ENSAI,Campus de Ker Lann
[2] Agricultural University of Poznán,Department of Mathematical and Statistical Methods
来源
Metrika | 2007年 / 65卷
关键词
Full Rank; Information Matrix; Orthogonal Matrix; Incidence Matrix; Generalize Inverse;
D O I
暂无
中图分类号
学科分类号
摘要
Consider the standard linear model Y=X θ + ε. If the parameter of interest is a full rank subsystem K′θ of mean parameters, the associated information matrix can be defined via an extremal representation. For rank deficient subsystems, Pukelsheim (1993) introduced the notion of generalized information matrices that inherit many properties of the information matrices. However, this notion is not a direct extension of the full rank case in the sense that the definition of the generalized information matrix applied to full rank subsystems does not lead to the usual information matrix. In this paper, we propose a definition of the information matrix via an extremal representation that encompasses the full rank and the non-full rank cases. We also study its properties and show its links with the generalized information matrices.
引用
收藏
页码:171 / 182
页数:11
相关论文
共 50 条
  • [1] Information matrices for non full rank subsystems
    Druilhet, Pierre
    Markiewicz, Augustyn
    METRIKA, 2007, 65 (02) : 171 - 182
  • [2] On the cardinalities of the row spaces of non-full rank Boolean matrices
    Zhang, MC
    Hong, SF
    Kan, HB
    SEMIGROUP FORUM, 1999, 59 (01) : 152 - 154
  • [3] On the Cardinalities of the Row spaces of Non-full Rank Boolean Matrices
    M.-C. Zhang
    S.-F. Hong
    H.-B. Kan
    Semigroup Forum, 1999, 59 : 152 - 154
  • [4] Full rank Cholesky factorization for rank deficient matrices
    Canto, Rafael
    Pelaez, Maria J.
    Urbano, Ana M.
    APPLIED MATHEMATICS LETTERS, 2015, 40 : 17 - 22
  • [5] On Boolean matrices with full factor rank
    Shitov, Ya. N.
    SBORNIK MATHEMATICS, 2013, 204 (11) : 1691 - 1699
  • [6] On Full-Rank Interval Matrices
    Shary, S. P.
    NUMERICAL ANALYSIS AND APPLICATIONS, 2014, 7 (03) : 241 - 254
  • [7] Stratification of full rank polynomial matrices
    Johansson, Stefan
    Kagstrom, Bo
    Van Dooren, Paul
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 439 (04) : 1062 - 1090
  • [8] Information matrices of maximal parameter subsystems in linear models
    Klein, T
    STATISTICS & PROBABILITY LETTERS, 2003, 62 (04) : 355 - 360
  • [9] The full rank condition for sparse random matrices
    Coja-Oghlan, Amin
    Gao, Pu
    Hahn-Klimroth, Max
    Lee, Joon
    Muller, Noela
    Rolvien, Maurice
    COMBINATORICS PROBABILITY AND COMPUTING, 2024,
  • [10] Block full rank linearizations of rational matrices
    Dopico, Froilan M.
    Marcaida, Silvia
    Quintana, Maria C.
    Van Dooren, Paul
    LINEAR & MULTILINEAR ALGEBRA, 2023, 71 (03): : 391 - 421