Uniqueness of the Non-Equilibrium Steady State for a 1d BGK Model in Kinetic Theory

被引:0
|
作者
E. Carlen
R. Esposito
J. Lebowitz
R. Marra
C. Mouhot
机构
[1] Rutgers University,Department of Mathematics
[2] Università di l’Aquila,International Research Center
[3] Rutgers University,Department of Mathematics & Department of Physics
[4] Università di Roma Tor Vergata,Dipartimento di Fisica and Unità INFN
[5] University of Cambridge,DPMMS, Centre for Mathematical Sciences
来源
Acta Applicandae Mathematicae | 2020年 / 169卷
关键词
Kinetic equation; Uniqueness; Non-equilibrium steady state;
D O I
暂无
中图分类号
学科分类号
摘要
We continue our investigation of kinetic models of a one-dimensional gas in contact with homogeneous thermal reservoirs at different temperatures. Nonlinear collisional interactions between particles are modeled by a so-called BGK dynamics which conserves local energy and particle density. Weighting the nonlinear BGK term with a parameter α∈[0,1]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\alpha\in[0,1]$\end{document}, and the linear interaction with the reservoirs by (1−α)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(1-\alpha)$\end{document}, we prove that for some α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\alpha$\end{document} close enough to zero, the explicit spatially uniform non-equilibrium steady state (NESS) is unique, and there are no spatially non-uniform NESS with a spatial density ρ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\rho$\end{document} belonging to Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$L^{p}$\end{document} for any p>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p>1$\end{document}. We also show that for all α∈[0,1]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\alpha\in[0,1]$\end{document}, the spatially uniform NESS is dynamically stable, with small perturbation converging to zero exponentially fast.
引用
收藏
页码:99 / 124
页数:25
相关论文
共 50 条
  • [21] Non-Equilibrium Steady States in Conformal Field Theory
    Denis Bernard
    Benjamin Doyon
    Annales Henri Poincaré, 2015, 16 : 113 - 161
  • [22] Non-equilibrium evaporation: 1D benchmark problem for single gas
    Graur, Irina A.
    Gatapova, Elizaveta Ya.
    Wolf, Moritz
    Batueva, Marina A.
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2021, 181
  • [23] Quantum reciprocity conjecture for the non-equilibrium steady state
    Coleman, P
    Mao, W
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2004, 16 (20) : L263 - L269
  • [24] Classical Orbital Paramagnetism in Non-equilibrium Steady State
    Deshpande, Avinash A.
    Kumar, N.
    JOURNAL OF ASTROPHYSICS AND ASTRONOMY, 2017, 38 (03)
  • [25] Classical Orbital Paramagnetism in Non-equilibrium Steady State
    Avinash A. Deshpande
    N. Kumar
    Journal of Astrophysics and Astronomy, 2017, 38
  • [26] Non-equilibrium vibrational steady state in chemisorption and catalysis
    Tomellini, M
    SURFACE SCIENCE, 2003, 544 (2-3) : 209 - 219
  • [27] THE SOLUTION OF THE STEADY STATE DISTRIBUTION IN NON-EQUILIBRIUM PROCESSES
    MEIJER, PHE
    BOWEN, JI
    PHYSICA, 1960, 26 (07): : 478 - 484
  • [28] Non-equilibrium thermodynamics and kinetic theory of rarefied gases
    Zhdanov, VM
    Roldughin, VI
    USPEKHI FIZICHESKIKH NAUK, 1998, 168 (04): : 407 - 438
  • [29] Post-Newtonian non-equilibrium kinetic theory
    Kremer, Gilberto M.
    ANNALS OF PHYSICS, 2022, 441
  • [30] Kinetic theory of radiation in non-equilibrium relativistic plasmas
    Morozov, V. G.
    Roepke, G.
    ANNALS OF PHYSICS, 2009, 324 (06) : 1261 - 1302