Uniqueness of the Non-Equilibrium Steady State for a 1d BGK Model in Kinetic Theory

被引:0
|
作者
E. Carlen
R. Esposito
J. Lebowitz
R. Marra
C. Mouhot
机构
[1] Rutgers University,Department of Mathematics
[2] Università di l’Aquila,International Research Center
[3] Rutgers University,Department of Mathematics & Department of Physics
[4] Università di Roma Tor Vergata,Dipartimento di Fisica and Unità INFN
[5] University of Cambridge,DPMMS, Centre for Mathematical Sciences
来源
Acta Applicandae Mathematicae | 2020年 / 169卷
关键词
Kinetic equation; Uniqueness; Non-equilibrium steady state;
D O I
暂无
中图分类号
学科分类号
摘要
We continue our investigation of kinetic models of a one-dimensional gas in contact with homogeneous thermal reservoirs at different temperatures. Nonlinear collisional interactions between particles are modeled by a so-called BGK dynamics which conserves local energy and particle density. Weighting the nonlinear BGK term with a parameter α∈[0,1]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\alpha\in[0,1]$\end{document}, and the linear interaction with the reservoirs by (1−α)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(1-\alpha)$\end{document}, we prove that for some α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\alpha$\end{document} close enough to zero, the explicit spatially uniform non-equilibrium steady state (NESS) is unique, and there are no spatially non-uniform NESS with a spatial density ρ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\rho$\end{document} belonging to Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$L^{p}$\end{document} for any p>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p>1$\end{document}. We also show that for all α∈[0,1]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\alpha\in[0,1]$\end{document}, the spatially uniform NESS is dynamically stable, with small perturbation converging to zero exponentially fast.
引用
收藏
页码:99 / 124
页数:25
相关论文
共 50 条
  • [1] Uniqueness of the Non-Equilibrium Steady State for a 1d BGK Model in Kinetic Theory
    Carlen, E.
    Esposito, R.
    Lebowitz, J.
    Marra, R.
    Mouhot, C.
    ACTA APPLICANDAE MATHEMATICAE, 2020, 169 (01) : 99 - 124
  • [2] Classical Transport, Steady States and Large Deviations in Non-equilibrium 1d Systems
    Derrida, Bernard
    6TH WARSAW SCHOOL OF STATISTICAL PHYSICS, 2017, : 3 - 6
  • [3] Approach to a non-equilibrium steady state
    Plasecki, Jaroslaw
    Soto, Rodrigo
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2006, 369 (02) : 379 - 386
  • [4] Non-equilibrium steady state transitions in a model actin cortex
    Tan, T.
    Garb, M. Malik
    Abu-Shah, E.
    Li, J.
    Sharma, A.
    McKintosh, F.
    Keren, K.
    Fakhri, N.
    Schmidt, C.
    FEBS JOURNAL, 2016, 283 : 22 - 22
  • [5] On the Theory of Steady-State Crystallization with a Non-Equilibrium Mushy Layer
    Alexandrov, D. V.
    Alexandrova, I. V.
    Ivanov, A. A.
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING 2016 (ICCMSE-2016), 2016, 1790
  • [6] Landau theory for non-equilibrium steady states
    Aron, Camille
    Chamon, Claudio
    SCIPOST PHYSICS, 2020, 8 (05):
  • [7] Luttinger liquid in a non-equilibrium steady state
    Mintchev, Mihail
    Sorba, Paul
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2013, 46 (09)
  • [8] Non-equilibrium steady state in the hydro regime
    Pourhasan, Razieh
    JOURNAL OF HIGH ENERGY PHYSICS, 2016, (02): : 1 - 15
  • [9] Equilibrium state and non-equilibrium steady state in an isolated human system
    郑文智
    梁源
    黄吉平
    Frontiers of Physics, 2014, 9 (01) : 128 - 135
  • [10] Non-equilibrium steady state of sparse systems
    Hurowitz, D.
    Cohen, D.
    EPL, 2011, 93 (06)