Semi-infinite Quantum Wells In a Position-Dependent Mass Background

被引:0
|
作者
C. Quesne
机构
[1] Université Libre de Bruxelles,Physique Nucléaire Théorique et Physique Mathématique
来源
Quantum Studies: Mathematics and Foundations | 2023年 / 10卷
关键词
Schrödinger equation; Position-dependent mass; Quantum well; Point canonical transformation; 81Q05; 81Q80;
D O I
暂无
中图分类号
学科分类号
摘要
Using a point canonical transformation starting from the constant-mass Schrödinger equation for the Morse potential, it is shown that a semi-infinite quantum well model with a non-rectangular profile associated with a position-dependent mass that becomes infinite for some negative value of the position, while going to a constant for a large positive value of the latter can be easily derived. In addition, another type of semi-infinite quantum well associated with the same position-dependent mass is constructed and solved by starting from the Rosen-Morse II potential instead of the Morse one.
引用
收藏
页码:237 / 244
页数:7
相关论文
共 50 条
  • [31] Quantum dynamics of a kicked system with position-dependent effective mass
    M. Vubangsi
    M. Tchoffo
    L. C. Fai
    The European Physical Journal Plus, 129
  • [32] On the singular position-dependent mass
    Lima, F. C. E.
    Belchior, F. M.
    Almeida, C. A. S.
    PHYSICA SCRIPTA, 2025, 100 (01)
  • [33] Quantum Group as Semi-infinite Cohomology
    Igor B. Frenkel
    Anton M. Zeitlin
    Communications in Mathematical Physics, 2010, 297 : 687 - 732
  • [34] Quantum Group as Semi-infinite Cohomology
    Frenkel, Igor B.
    Zeitlin, Anton M.
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2010, 297 (03) : 687 - 732
  • [35] Some implications of position-dependent mass quantum fractional Hamiltonian in quantum mechanics
    El-Nabulsi, Rami Ahmad
    EUROPEAN PHYSICAL JOURNAL PLUS, 2019, 134 (05):
  • [36] Some implications of position-dependent mass quantum fractional Hamiltonian in quantum mechanics
    Rami Ahmad El-Nabulsi
    The European Physical Journal Plus, 134
  • [37] MASS AND POTENTIAL DUALITY EXPLORED VIA A POSITION-DEPENDENT MASS QUANTUM APPROACH
    Naeim, Ihab H.
    Abdalla, S.
    Batle, J.
    Farouk, A.
    ROMANIAN JOURNAL OF PHYSICS, 2017, 62 (9-10):
  • [39] Quantum Operator Approach Applied to the Position-Dependent Mass Schrodinger Equation
    Ovando, G.
    Pena, J. J.
    Morales, J.
    2ND INTERNATIONAL CONFERENCE ON MATHEMATICAL MODELING IN PHYSICAL SCIENCES 2013 (IC-MSQUARE 2013), 2014, 490
  • [40] κ-Deformed quantum and classical mechanics for a system with position-dependent effective mass
    da Costa, Bruno G.
    Gomez, Ignacio S.
    Portesi, Mariela
    JOURNAL OF MATHEMATICAL PHYSICS, 2020, 61 (08)